Transformer-Based Self-Supervised Multimodal Representation Learning for Wearable Emotion Recognition

计算机科学 人工智能 过度拟合 模式识别(心理学) 可穿戴计算机 机器学习 编码器 特征提取 自编码 语音识别 深度学习 人工神经网络 操作系统 嵌入式系统
作者
Yujin Wu,Mohamed Daoudi,Ali Amad
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (1): 157-172 被引量:25
标识
DOI:10.1109/taffc.2023.3263907
摘要

Recently, wearable emotion recognition based on peripheral physiological signals has drawn massive attention due to its less invasive nature and its applicability in real-life scenarios. However, how to effectively fuse multimodal data remains a challenging problem. Moreover, traditional fully-supervised based approaches suffer from overfitting given limited labeled data. To address the above issues, we propose a novel self-supervised learning (SSL) framework for wearable emotion recognition, where efficient multimodal fusion is realized with temporal convolution-based modality-specific encoders and a transformer-based shared encoder, capturing both intra-modal and inter-modal correlations. Extensive unlabeled data is automatically assigned labels by five signal transforms, and the proposed SSL model is pre-trained with signal transformation recognition as a pretext task, allowing the extraction of generalized multimodal representations for emotion-related downstream tasks. For evaluation, the proposed SSL model was first pre-trained on a large-scale self-collected physiological dataset and the resulting encoder was subsequently frozen or fine-tuned on three public supervised emotion recognition datasets. Ultimately, our SSL-based method achieved state-of-the-art results in various emotion classification tasks. Meanwhile, the proposed model was proved to be more accurate and robust compared to fully-supervised methods on low data regimes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俞渝完成签到,获得积分10
1秒前
哭泣的月饼完成签到,获得积分10
1秒前
科目三应助onlysky采纳,获得10
2秒前
勤劳丹萱应助bofu采纳,获得10
3秒前
5秒前
5秒前
5秒前
FashionBoy应助吉他平方采纳,获得10
6秒前
6秒前
充电宝应助啵啵采纳,获得10
7秒前
在水一方应助zzz采纳,获得10
7秒前
打打应助冰河采纳,获得10
7秒前
jjjeneny发布了新的文献求助10
8秒前
9秒前
小二郎应助yangyajie采纳,获得10
10秒前
wanci应助波西米亚采纳,获得10
11秒前
yolanda发布了新的文献求助10
12秒前
香蕉海白关注了科研通微信公众号
14秒前
菘蓝泽蓼完成签到,获得积分10
14秒前
英俊的铭应助pdx666采纳,获得10
14秒前
14秒前
NexusExplorer应助比巴卜采纳,获得10
14秒前
14秒前
852应助jjjeneny采纳,获得10
15秒前
15秒前
sjl发布了新的文献求助10
15秒前
lllll发布了新的文献求助10
16秒前
许鑫蓁完成签到,获得积分10
17秒前
YY完成签到,获得积分10
17秒前
Owen应助孔雨欣采纳,获得10
17秒前
完美世界应助车奎采纳,获得10
17秒前
18秒前
光军完成签到 ,获得积分10
19秒前
科研通AI5应助LSS采纳,获得10
19秒前
Akim应助yolanda采纳,获得10
20秒前
小胖子发布了新的文献求助10
20秒前
科研通AI5应助feenuar采纳,获得30
23秒前
23秒前
24秒前
广州城建职业技术学院完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559939
求助须知:如何正确求助?哪些是违规求助? 3134315
关于积分的说明 9406692
捐赠科研通 2834416
什么是DOI,文献DOI怎么找? 1558103
邀请新用户注册赠送积分活动 727848
科研通“疑难数据库(出版商)”最低求助积分说明 716522