An Endodontic Forecasting Model Based on the Analysis of Preoperative Dental Radiographs: A Pilot Study on an Endodontic Predictive Deep Neural Network

冠状面 接收机工作特性 射线照相术 医学 牙科 根管 口腔正畸科 卷积神经网络 人工智能 计算机科学 放射科 内科学
作者
Junghoon Lee,Hyunseok Seo,Yoon Jeong Choi,Chena Lee,Sunil Kim,Ye Sel Lee,Sukjoon Lee,Euiseong Kim
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:49 (6): 710-719 被引量:5
标识
DOI:10.1016/j.joen.2023.03.015
摘要

This study aimed to evaluate the use of deep convolutional neural network (DCNN) algorithms to detect clinical features and predict the three-year outcome of endodontic treatment on preoperative periapical radiographs.A database of single-root premolars that received endodontic treatment or retreatment by endodontists with presence of three-year outcome was prepared (n = 598). We constructed a 17-layered DCNN with a self-attention layer (Periapical Radiograph Explanatory System with Self-Attention Network [PRESSAN-17]), and the model was trained, validated, and tested to 1) detect 7 clinical features, that is, full coverage restoration, presence of proximal teeth, coronal defect, root rest, canal visibility, previous root filling, and periapical radiolucency and 2) predict the three-year endodontic prognosis by analyzing preoperative periapical radiographs as an input. During the prognostication test, a conventional DCNN without a self-attention layer (residual neural network [RESNET]-18) was tested for comparison. Accuracy and area under the receiver-operating-characteristic curve were mainly evaluated for performance comparison. Gradient-weighted class activation mapping was used to visualize weighted heatmaps.PRESSAN-17 detected full coverage restoration (area under the receiver-operating-characteristic curve = 0.975), presence of proximal teeth (0.866), coronal defect (0.672), root rest (0.989), previous root filling (0.879), and periapical radiolucency (0.690) significantly, compared to the no-information rate (P < .05). Comparing the mean accuracy of 5-fold validation of 2 models, PRESSAN-17 (67.0%) showed a significant difference to RESNET-18 (63.4%, P < .05). Also, the area under average receiver-operating-characteristic of PRESSAN-17 was 0.638, which was significantly different compared to the no-information rate. Gradient-weighted class activation mapping demonstrated that PRESSAN-17 correctly identified clinical features.Deep convolutional neural networks can detect several clinical features in periapical radiographs accurately. Based on our findings, well-developed artificial intelligence can support clinical decisions related to endodontic treatments in dentists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt耶完成签到 ,获得积分10
刚刚
1秒前
LH发布了新的文献求助10
2秒前
xudanhong完成签到,获得积分20
3秒前
kingmantj发布了新的文献求助10
3秒前
SYLH应助jhw采纳,获得10
3秒前
4秒前
隽永关注了科研通微信公众号
4秒前
丘比特应助he采纳,获得10
5秒前
阿朱嘻嘻完成签到,获得积分10
6秒前
Lucas应助故意的怜晴采纳,获得10
6秒前
李爱国应助哈哈采纳,获得10
6秒前
65556完成签到,获得积分10
6秒前
文艺映之发布了新的文献求助10
7秒前
deng发布了新的文献求助10
7秒前
xudanhong发布了新的文献求助10
8秒前
怕孤独的傲丝完成签到,获得积分10
8秒前
8秒前
快乐的晟睿完成签到,获得积分10
8秒前
Lzq发布了新的文献求助10
10秒前
烟花应助小凉采纳,获得10
13秒前
Ava应助kingmantj采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
LH完成签到,获得积分10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
彭于晏应助花花采纳,获得10
14秒前
山复尔尔应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
万能图书馆应助大观天下采纳,获得10
15秒前
乔垣结衣应助科研通管家采纳,获得10
15秒前
ED应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420