SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning

初始化 计算机科学 水准点(测量) 分段 路径(计算) 趋同(经济学) 人口 蚁群优化算法 算法 数学优化 数学 程序设计语言 数学分析 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Gang Hu,Jingyu Zhong,Guo Wei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119941-119941 被引量:77
标识
DOI:10.1016/j.eswa.2023.119941
摘要

The honey badger algorithm (HBA) is a meta-heuristic optimization algorithm that simulates the foraging behavior of honey badgers. Since the algorithm is prone to premature convergence when solving complex optimization problems. To improve the overall optimization performance of the basic HBA, this paper develops a modified HBA named SaCHBA_PDN based on the Bernoulli shift map, piecewise optimal decreasing neighborhood, and horizontal crossing with strategy adaptation and applies it to solve the unmanned aerial vehicle (UAV) path planning problem. Firstly, the Bernoulli shift map is invoked to the HBA algorithm to change its initialization process, thus increasing the diversity of the population and speeding up the convergence speed. Secondly, a new piecewise optimal decreasing neighborhood strategy (PODNS) is proposed to address the shortcomings of unbalanced convergence of the traditional optimal neighborhood strategy. The proposed PODNS increases the optimization efficiency of HBA and enhances the local search ability to avoid falling into the local optimum. Finally, a novel horizontal crossing with strategy adaptation is introduced to balance exploration and exploitation and enhance the global optimization ability. These strategies collaborate to enhance HBA in accelerating overall performance. The superiority of SaCHBA_PDN is comprehensively verified by comparing it with the original HBA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions and IEEE CEC2017 test suite, respectively. Experimental results show that SaCHBA_PDN has a better performance than other optimization algorithms. Furthermore, SaCHBA_PDN is used to solve a UAV path planning problem based on the threat source model and applied to circular and irregular obstacle scenarios as well as two-dimensional grid maps. Simulation results show that SaCHBA_PDN can obtain more feasible and efficient paths in different obstacle environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pengGuo完成签到,获得积分20
刚刚
宁萌不酸发布了新的文献求助10
1秒前
2秒前
弎夜发布了新的文献求助10
2秒前
阿达发布了新的文献求助10
2秒前
脑洞疼应助小李采纳,获得10
2秒前
今后应助sober采纳,获得10
2秒前
JamesPei应助罗曼蒂克采纳,获得10
2秒前
打打应助666采纳,获得10
3秒前
mhl完成签到 ,获得积分10
4秒前
4秒前
爆米花应助Krieger采纳,获得10
4秒前
Orange应助lh0907采纳,获得10
5秒前
5秒前
科研通AI5应助午盏采纳,获得30
6秒前
6秒前
Vann发布了新的文献求助10
7秒前
lalalal完成签到,获得积分10
7秒前
7秒前
汉堡包应助宁萌不酸采纳,获得10
7秒前
传奇3应助瘦瘦的艳采纳,获得20
9秒前
9秒前
Ssyong发布了新的文献求助10
9秒前
yy完成签到,获得积分10
10秒前
彭于晏应助wenxianxiazai123采纳,获得10
10秒前
pp发布了新的文献求助10
10秒前
可罗雀完成签到,获得积分0
12秒前
13秒前
yy发布了新的文献求助10
14秒前
14秒前
15秒前
sptyzl完成签到 ,获得积分10
16秒前
瘦瘦的艳发布了新的文献求助10
17秒前
18秒前
兔子完成签到 ,获得积分10
18秒前
wanci应助666采纳,获得10
18秒前
19秒前
喜悦晓曼完成签到,获得积分10
19秒前
Ssyong完成签到,获得积分10
19秒前
kyosa完成签到,获得积分10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207786
求助须知:如何正确求助?哪些是违规求助? 4385675
关于积分的说明 13657801
捐赠科研通 4244340
什么是DOI,文献DOI怎么找? 2328746
邀请新用户注册赠送积分活动 1326528
关于科研通互助平台的介绍 1278611