SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning

初始化 计算机科学 水准点(测量) 分段 路径(计算) 趋同(经济学) 人口 蚁群优化算法 算法 数学优化 数学 程序设计语言 数学分析 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Gang Hu,Jingyu Zhong,Guo Wei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119941-119941 被引量:77
标识
DOI:10.1016/j.eswa.2023.119941
摘要

The honey badger algorithm (HBA) is a meta-heuristic optimization algorithm that simulates the foraging behavior of honey badgers. Since the algorithm is prone to premature convergence when solving complex optimization problems. To improve the overall optimization performance of the basic HBA, this paper develops a modified HBA named SaCHBA_PDN based on the Bernoulli shift map, piecewise optimal decreasing neighborhood, and horizontal crossing with strategy adaptation and applies it to solve the unmanned aerial vehicle (UAV) path planning problem. Firstly, the Bernoulli shift map is invoked to the HBA algorithm to change its initialization process, thus increasing the diversity of the population and speeding up the convergence speed. Secondly, a new piecewise optimal decreasing neighborhood strategy (PODNS) is proposed to address the shortcomings of unbalanced convergence of the traditional optimal neighborhood strategy. The proposed PODNS increases the optimization efficiency of HBA and enhances the local search ability to avoid falling into the local optimum. Finally, a novel horizontal crossing with strategy adaptation is introduced to balance exploration and exploitation and enhance the global optimization ability. These strategies collaborate to enhance HBA in accelerating overall performance. The superiority of SaCHBA_PDN is comprehensively verified by comparing it with the original HBA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions and IEEE CEC2017 test suite, respectively. Experimental results show that SaCHBA_PDN has a better performance than other optimization algorithms. Furthermore, SaCHBA_PDN is used to solve a UAV path planning problem based on the threat source model and applied to circular and irregular obstacle scenarios as well as two-dimensional grid maps. Simulation results show that SaCHBA_PDN can obtain more feasible and efficient paths in different obstacle environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的蘑菇完成签到,获得积分10
刚刚
领导范儿应助大气的梨愁采纳,获得10
1秒前
求助人员发布了新的文献求助10
1秒前
完美世界应助小纸白采纳,获得10
1秒前
shenya0810应助long采纳,获得10
1秒前
无极微光应助谁在说话采纳,获得20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
堪妙松发布了新的文献求助20
3秒前
慕青应助Rubia采纳,获得10
3秒前
3秒前
4秒前
yannn1126发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
nnmm11发布了新的文献求助10
4秒前
100完成签到,获得积分10
5秒前
5秒前
All发布了新的文献求助10
6秒前
6秒前
紫麒麟发布了新的文献求助10
6秒前
安AN完成签到,获得积分10
6秒前
安静发布了新的文献求助10
7秒前
飞fei发布了新的文献求助50
8秒前
8秒前
陈忠正发布了新的文献求助20
8秒前
温十一应助111采纳,获得10
8秒前
9秒前
科研混子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
辣辣发布了新的文献求助10
11秒前
肆三一发布了新的文献求助10
12秒前
爆米花应助qww采纳,获得40
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362