SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning

初始化 计算机科学 水准点(测量) 分段 路径(计算) 趋同(经济学) 人口 蚁群优化算法 算法 数学优化 数学 程序设计语言 数学分析 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Gang Hu,Jingyu Zhong,Guo Wei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119941-119941 被引量:77
标识
DOI:10.1016/j.eswa.2023.119941
摘要

The honey badger algorithm (HBA) is a meta-heuristic optimization algorithm that simulates the foraging behavior of honey badgers. Since the algorithm is prone to premature convergence when solving complex optimization problems. To improve the overall optimization performance of the basic HBA, this paper develops a modified HBA named SaCHBA_PDN based on the Bernoulli shift map, piecewise optimal decreasing neighborhood, and horizontal crossing with strategy adaptation and applies it to solve the unmanned aerial vehicle (UAV) path planning problem. Firstly, the Bernoulli shift map is invoked to the HBA algorithm to change its initialization process, thus increasing the diversity of the population and speeding up the convergence speed. Secondly, a new piecewise optimal decreasing neighborhood strategy (PODNS) is proposed to address the shortcomings of unbalanced convergence of the traditional optimal neighborhood strategy. The proposed PODNS increases the optimization efficiency of HBA and enhances the local search ability to avoid falling into the local optimum. Finally, a novel horizontal crossing with strategy adaptation is introduced to balance exploration and exploitation and enhance the global optimization ability. These strategies collaborate to enhance HBA in accelerating overall performance. The superiority of SaCHBA_PDN is comprehensively verified by comparing it with the original HBA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions and IEEE CEC2017 test suite, respectively. Experimental results show that SaCHBA_PDN has a better performance than other optimization algorithms. Furthermore, SaCHBA_PDN is used to solve a UAV path planning problem based on the threat source model and applied to circular and irregular obstacle scenarios as well as two-dimensional grid maps. Simulation results show that SaCHBA_PDN can obtain more feasible and efficient paths in different obstacle environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自觉志泽发布了新的文献求助10
刚刚
ping完成签到 ,获得积分10
刚刚
刚刚
米子哈发布了新的文献求助10
1秒前
华仔应助刘奎冉采纳,获得30
1秒前
研友Bn完成签到 ,获得积分10
2秒前
2秒前
3秒前
xinghe123发布了新的文献求助10
3秒前
酷酷问薇完成签到,获得积分20
4秒前
4秒前
H_完成签到,获得积分10
4秒前
2024dsb完成签到 ,获得积分10
5秒前
5秒前
西行纪发布了新的文献求助10
6秒前
DreamSeker8完成签到,获得积分10
6秒前
科研通AI6应助Scorpio采纳,获得30
6秒前
6秒前
认真浩宇发布了新的文献求助10
7秒前
坚强小虾米完成签到,获得积分10
7秒前
7秒前
8秒前
zzztsing0213完成签到,获得积分10
8秒前
sxmt123456789发布了新的文献求助30
9秒前
9秒前
jingxu发布了新的文献求助10
10秒前
nsk发布了新的文献求助10
11秒前
畅快的觅风完成签到,获得积分10
11秒前
12秒前
sxs发布了新的文献求助10
12秒前
慕青应助坚强小虾米采纳,获得10
12秒前
沉默海完成签到,获得积分10
12秒前
Steven完成签到 ,获得积分10
12秒前
科研通AI6应助山雷采纳,获得10
13秒前
桐桐应助小张在努力采纳,获得10
13秒前
酷波er应助sci大户采纳,获得10
14秒前
ding应助DrLee采纳,获得10
14秒前
14秒前
SciGPT应助刘丰铭采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809