SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning

初始化 计算机科学 水准点(测量) 分段 路径(计算) 趋同(经济学) 人口 蚁群优化算法 算法 数学优化 数学 社会学 地理 程序设计语言 经济 人口学 数学分析 经济增长 大地测量学
作者
Gang Hu,Jingyu Zhong,Guo Wei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119941-119941 被引量:47
标识
DOI:10.1016/j.eswa.2023.119941
摘要

The honey badger algorithm (HBA) is a meta-heuristic optimization algorithm that simulates the foraging behavior of honey badgers. Since the algorithm is prone to premature convergence when solving complex optimization problems. To improve the overall optimization performance of the basic HBA, this paper develops a modified HBA named SaCHBA_PDN based on the Bernoulli shift map, piecewise optimal decreasing neighborhood, and horizontal crossing with strategy adaptation and applies it to solve the unmanned aerial vehicle (UAV) path planning problem. Firstly, the Bernoulli shift map is invoked to the HBA algorithm to change its initialization process, thus increasing the diversity of the population and speeding up the convergence speed. Secondly, a new piecewise optimal decreasing neighborhood strategy (PODNS) is proposed to address the shortcomings of unbalanced convergence of the traditional optimal neighborhood strategy. The proposed PODNS increases the optimization efficiency of HBA and enhances the local search ability to avoid falling into the local optimum. Finally, a novel horizontal crossing with strategy adaptation is introduced to balance exploration and exploitation and enhance the global optimization ability. These strategies collaborate to enhance HBA in accelerating overall performance. The superiority of SaCHBA_PDN is comprehensively verified by comparing it with the original HBA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions and IEEE CEC2017 test suite, respectively. Experimental results show that SaCHBA_PDN has a better performance than other optimization algorithms. Furthermore, SaCHBA_PDN is used to solve a UAV path planning problem based on the threat source model and applied to circular and irregular obstacle scenarios as well as two-dimensional grid maps. Simulation results show that SaCHBA_PDN can obtain more feasible and efficient paths in different obstacle environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的天亦完成签到,获得积分10
刚刚
刚刚
小二郎应助冷艳的海豚采纳,获得10
1秒前
1秒前
2秒前
JamesPei应助明明采纳,获得10
2秒前
李爱国应助星星采纳,获得10
2秒前
3秒前
小林不会数学完成签到,获得积分10
3秒前
科研通AI2S应助斯文谷秋采纳,获得10
3秒前
学习发布了新的文献求助10
4秒前
科研啊科研完成签到,获得积分10
4秒前
安安发布了新的文献求助10
5秒前
5秒前
yuyu完成签到,获得积分10
5秒前
传奇3应助zz采纳,获得10
6秒前
7秒前
zx发布了新的文献求助10
7秒前
赘婿应助Zzzhuan采纳,获得30
7秒前
无限猕猴桃完成签到,获得积分10
8秒前
wyy发布了新的文献求助10
8秒前
8秒前
英俊的铭应助大意的谷冬采纳,获得30
8秒前
YEEze完成签到,获得积分10
8秒前
orixero应助usrcu采纳,获得10
9秒前
9秒前
鲤鱼完成签到,获得积分10
9秒前
呆瓜完成签到,获得积分10
10秒前
耍酷问兰发布了新的文献求助10
10秒前
10秒前
大约在冬季完成签到,获得积分10
11秒前
隐形曼青应助麓麓菌采纳,获得10
11秒前
11秒前
绿泡泡发布了新的文献求助10
11秒前
KK发布了新的文献求助10
12秒前
12秒前
12秒前
Stove完成签到,获得积分10
13秒前
敢敢发布了新的文献求助10
13秒前
13秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169010
求助须知:如何正确求助?哪些是违规求助? 2820280
关于积分的说明 7930001
捐赠科研通 2480430
什么是DOI,文献DOI怎么找? 1321334
科研通“疑难数据库(出版商)”最低求助积分说明 633204
版权声明 602497