SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning

初始化 计算机科学 水准点(测量) 分段 路径(计算) 趋同(经济学) 人口 蚁群优化算法 算法 数学优化 数学 程序设计语言 数学分析 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Gang Hu,Jingyu Zhong,Guo Wei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119941-119941 被引量:72
标识
DOI:10.1016/j.eswa.2023.119941
摘要

The honey badger algorithm (HBA) is a meta-heuristic optimization algorithm that simulates the foraging behavior of honey badgers. Since the algorithm is prone to premature convergence when solving complex optimization problems. To improve the overall optimization performance of the basic HBA, this paper develops a modified HBA named SaCHBA_PDN based on the Bernoulli shift map, piecewise optimal decreasing neighborhood, and horizontal crossing with strategy adaptation and applies it to solve the unmanned aerial vehicle (UAV) path planning problem. Firstly, the Bernoulli shift map is invoked to the HBA algorithm to change its initialization process, thus increasing the diversity of the population and speeding up the convergence speed. Secondly, a new piecewise optimal decreasing neighborhood strategy (PODNS) is proposed to address the shortcomings of unbalanced convergence of the traditional optimal neighborhood strategy. The proposed PODNS increases the optimization efficiency of HBA and enhances the local search ability to avoid falling into the local optimum. Finally, a novel horizontal crossing with strategy adaptation is introduced to balance exploration and exploitation and enhance the global optimization ability. These strategies collaborate to enhance HBA in accelerating overall performance. The superiority of SaCHBA_PDN is comprehensively verified by comparing it with the original HBA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions and IEEE CEC2017 test suite, respectively. Experimental results show that SaCHBA_PDN has a better performance than other optimization algorithms. Furthermore, SaCHBA_PDN is used to solve a UAV path planning problem based on the threat source model and applied to circular and irregular obstacle scenarios as well as two-dimensional grid maps. Simulation results show that SaCHBA_PDN can obtain more feasible and efficient paths in different obstacle environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰冰子完成签到,获得积分10
1秒前
zx发布了新的文献求助10
1秒前
wulin发布了新的文献求助10
1秒前
明亮雨真发布了新的文献求助150
1秒前
1秒前
2秒前
爱听歌的糖豆完成签到,获得积分10
2秒前
CR7应助飞羽采纳,获得20
2秒前
hotcas完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI2S应助奶油泡fu采纳,获得10
4秒前
Camellia完成签到,获得积分10
4秒前
阿越应助江月年采纳,获得10
5秒前
5秒前
5秒前
Hello应助嗡嗡嗡采纳,获得10
5秒前
yzbbb发布了新的文献求助10
6秒前
TRY完成签到,获得积分10
6秒前
CipherSage应助眯眯眼的笑采纳,获得10
6秒前
奇拉维特完成签到 ,获得积分10
6秒前
小叶子发布了新的文献求助10
6秒前
6秒前
诚心的砖头完成签到,获得积分20
7秒前
7秒前
科研通AI6应助小羊医生采纳,获得10
7秒前
8秒前
领导范儿应助在写了采纳,获得10
8秒前
8秒前
8秒前
俄而完成签到 ,获得积分10
8秒前
8秒前
成就的迎夏完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
lilac完成签到,获得积分10
11秒前
mogeko完成签到,获得积分10
11秒前
奋斗若风发布了新的文献求助10
11秒前
明亮雨真发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802