Predicting the need for a replan in oropharyngeal cancer: a radiomic, clinical, and dosimetric model

无线电技术 医学 医学物理学 癌症 放射科 计算机科学 内科学
作者
Tricia Chinnery,Pencilla Lang,Anthony C. Nichols,Sarah A. Mattonen
标识
DOI:10.1117/12.2652628
摘要

Patients with oropharyngeal cancer (OPC) treated with chemoradiation experience weight loss and tumor shrinkage. As a result, many of these patients will require a replan during radiation treatment. We aimed to develop a machine learning model to predict the need for a replan in patients with OPC (n=315). A total of 78 patients (25%) required a replan. The dataset was split into independent training (n=220) and testing (n=95) datasets. Tumor volumes and organs at risk (OARs) were contoured on planning CT images prior to treatment. PyRadiomics was used to compute radiomic features from the primary tumor, nodal volumes, and parotid glands. Clinical and dose features extracted from the OARs were collected and those significantly associated with the need for a replan in the training dataset were used in a baseline model. Feature selection was applied to select the optimal radiomic features. Classifiers were built using the non-correlated selected radiomic, clinical, and dose features on the training dataset and performance was assessed in the testing dataset. Three clinical and one dose feature were incorporated into the baseline model, as well as into the combined models. Eight predictive radiomic features were selected. The baseline model achieved an AUC of 0.66 [95% CI: 0.51-0.79] in the testing dataset. The Naïve Bayes was the top-performing radiomics model and achieved an AUC of 0.80 [95% CI: 0.69-0.90] in the testing dataset, outperforming the baseline model (p=0.005). This model could assist physicians in identifying patients who may benefit from a replan, improving the replanning workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助njzyyq采纳,获得10
刚刚
伶俐绿海完成签到 ,获得积分10
2秒前
3秒前
肘子完成签到,获得积分10
4秒前
4秒前
6秒前
老实的栾发布了新的文献求助10
7秒前
善学以致用应助俗丨采纳,获得10
7秒前
情怀应助火星上的语海采纳,获得30
7秒前
无花果应助负责的千易采纳,获得10
10秒前
10秒前
zzst发布了新的文献求助10
12秒前
stuckinrain完成签到,获得积分10
13秒前
13秒前
黄俊发布了新的文献求助10
13秒前
朴斓发布了新的文献求助10
14秒前
14秒前
15秒前
Melody关注了科研通微信公众号
16秒前
向蒋丞选手学习关注了科研通微信公众号
16秒前
大度齐完成签到,获得积分10
17秒前
17秒前
18秒前
郑石发布了新的文献求助10
18秒前
mumu完成签到,获得积分10
18秒前
阿巴阿巴发布了新的文献求助10
20秒前
喜悦香薇完成签到 ,获得积分10
23秒前
23秒前
怡宝完成签到,获得积分10
23秒前
24秒前
幸福大白完成签到,获得积分10
24秒前
nmamtf发布了新的文献求助10
24秒前
阿巴阿巴完成签到,获得积分10
26秒前
11发布了新的文献求助10
27秒前
lizhaonian完成签到,获得积分10
27秒前
朴斓完成签到,获得积分10
27秒前
28秒前
29秒前
29秒前
天阳完成签到,获得积分10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269614
求助须知:如何正确求助?哪些是违规求助? 2909321
关于积分的说明 8348530
捐赠科研通 2579562
什么是DOI,文献DOI怎么找? 1402898
科研通“疑难数据库(出版商)”最低求助积分说明 655557
邀请新用户注册赠送积分活动 634814