MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson’s disease diagnosis

计算机科学 聚类分析 聚类系数 图形 节点(物理) 特征学习 人工智能 模块化(生物学) 复杂网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学 工程类 生物 结构工程 万维网 遗传学
作者
Liqin Huang,Xiaofang Ye,Mingjing Yang,Lin Pan,Shao hua Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106308-106308 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.106308
摘要

The identification of early-stage Parkinson's disease (PD) is important for the effective management of patients, affecting their treatment and prognosis. Recently, structural brain networks (SBNs) have been used to diagnose PD. However, how to mine abnormal patterns from high-dimensional SBNs has been a challenge due to the complex topology of the brain. Meanwhile, the existing prediction mechanisms of deep learning models are often complicated, and it is difficult to extract effective interpretations. In addition, most works only focus on the classification of imaging and ignore clinical scores in practical applications, which limits the ability of the model. Inspired by the regional modularity of SBNs, we adopted graph learning from the perspective of node clustering to construct an interpretable framework for PD classification.In this study, a multi-task graph structure learning framework based on node clustering (MNC-Net) is proposed for the early diagnosis of PD. Specifically, we modeled complex SBNs into modular graphs that facilitated the representation learning of abnormal patterns. Traditional graph neural networks are optimized through graph structure learning based on node clustering, which identifies potentially abnormal brain regions and reduces the impact of irrelevant noise. Furthermore, we employed a regression task to link clinical scores to disease classification, and incorporated latent domain information into model training through multi-task learning.We validated the proposed approach on the Parkinsons Progression Markers Initiative dataset. Experimental results showed that our MNC-Net effectively separated the early-stage PD from healthy controls(HC) with an accuracy of 95.5%. The t-SNE figures have showed that our graph structure learning method can capture more efficient and discriminatory features. Furthermore, node clustering parameters were used as important weights to extract salient task-related brain regions(ROIs). These ROIs are involved in the development of mood disorders, tremors, imbalances and other symptoms, highlighting the importance of memory, language and mild motor function in early PD. In addition, statistical results from clinical scores confirmed that our model could capture abnormal connectivity that was significantly different between PD and HC. These results are consistent with previous studies, demonstrating the interpretability of our methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助sujustin333采纳,获得10
1秒前
田田发布了新的文献求助50
1秒前
3秒前
SMLW发布了新的文献求助10
3秒前
麦芒拾音柴完成签到,获得积分10
3秒前
明理映真完成签到,获得积分10
3秒前
3秒前
烟花应助miller采纳,获得10
4秒前
4秒前
5秒前
科研通AI2S应助生动的芝采纳,获得10
5秒前
任性的傲柏完成签到,获得积分10
7秒前
啦啦啦123发布了新的文献求助10
7秒前
科目三应助cxt采纳,获得10
9秒前
无花果应助两面性采纳,获得10
9秒前
9秒前
10秒前
英俊的铭应助风中听枫采纳,获得10
12秒前
12秒前
13秒前
Akim应助叶白山采纳,获得10
13秒前
14秒前
ywpzdnb完成签到,获得积分10
15秒前
16秒前
17秒前
jie发布了新的文献求助10
17秒前
18秒前
yuyu发布了新的文献求助10
19秒前
快乐再出发完成签到,获得积分10
19秒前
斯文败类应助Brill采纳,获得10
19秒前
yy完成签到,获得积分10
21秒前
舒适仰发布了新的文献求助30
21秒前
21秒前
ding应助德德采纳,获得10
21秒前
22秒前
ywpzdnb发布了新的文献求助10
22秒前
李爱国应助张英俊采纳,获得10
22秒前
所所应助。。采纳,获得10
22秒前
风中听枫发布了新的文献求助10
24秒前
豌豆完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706