MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson’s disease diagnosis

计算机科学 聚类分析 聚类系数 图形 节点(物理) 特征学习 人工智能 模块化(生物学) 复杂网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学 工程类 生物 结构工程 万维网 遗传学
作者
Liqin Huang,Xiaofang Ye,Mingjing Yang,Lin Pan,Shao hua Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106308-106308 被引量:28
标识
DOI:10.1016/j.compbiomed.2022.106308
摘要

The identification of early-stage Parkinson's disease (PD) is important for the effective management of patients, affecting their treatment and prognosis. Recently, structural brain networks (SBNs) have been used to diagnose PD. However, how to mine abnormal patterns from high-dimensional SBNs has been a challenge due to the complex topology of the brain. Meanwhile, the existing prediction mechanisms of deep learning models are often complicated, and it is difficult to extract effective interpretations. In addition, most works only focus on the classification of imaging and ignore clinical scores in practical applications, which limits the ability of the model. Inspired by the regional modularity of SBNs, we adopted graph learning from the perspective of node clustering to construct an interpretable framework for PD classification.In this study, a multi-task graph structure learning framework based on node clustering (MNC-Net) is proposed for the early diagnosis of PD. Specifically, we modeled complex SBNs into modular graphs that facilitated the representation learning of abnormal patterns. Traditional graph neural networks are optimized through graph structure learning based on node clustering, which identifies potentially abnormal brain regions and reduces the impact of irrelevant noise. Furthermore, we employed a regression task to link clinical scores to disease classification, and incorporated latent domain information into model training through multi-task learning.We validated the proposed approach on the Parkinsons Progression Markers Initiative dataset. Experimental results showed that our MNC-Net effectively separated the early-stage PD from healthy controls(HC) with an accuracy of 95.5%. The t-SNE figures have showed that our graph structure learning method can capture more efficient and discriminatory features. Furthermore, node clustering parameters were used as important weights to extract salient task-related brain regions(ROIs). These ROIs are involved in the development of mood disorders, tremors, imbalances and other symptoms, highlighting the importance of memory, language and mild motor function in early PD. In addition, statistical results from clinical scores confirmed that our model could capture abnormal connectivity that was significantly different between PD and HC. These results are consistent with previous studies, demonstrating the interpretability of our methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elige完成签到,获得积分10
2秒前
开放的从菡完成签到 ,获得积分10
3秒前
3秒前
夏浅完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
FR完成签到,获得积分10
5秒前
游标卡尺不孤独完成签到,获得积分20
5秒前
6秒前
苏苏阿苏完成签到 ,获得积分10
7秒前
8秒前
8秒前
cckk完成签到,获得积分10
8秒前
8秒前
冷静雨完成签到,获得积分10
10秒前
kingsley320发布了新的文献求助10
11秒前
专注寻菱完成签到,获得积分10
11秒前
翊瑾完成签到,获得积分10
12秒前
千逐完成签到,获得积分10
12秒前
打打应助Yongander采纳,获得10
13秒前
KIKIKI发布了新的文献求助10
15秒前
胡不归完成签到,获得积分20
17秒前
小豆包完成签到 ,获得积分10
17秒前
17秒前
想和你陈成阿狗完成签到,获得积分10
17秒前
xiaoliu完成签到,获得积分10
18秒前
沉默的凝荷完成签到,获得积分10
19秒前
合适的平安完成签到 ,获得积分10
20秒前
PHW完成签到,获得积分10
22秒前
22秒前
曹先生完成签到,获得积分10
23秒前
23秒前
24秒前
淡定的安白完成签到,获得积分10
24秒前
铜离子完成签到,获得积分10
24秒前
图图发布了新的文献求助10
27秒前
29秒前
世无我发布了新的文献求助10
31秒前
ttc完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294178
求助须知:如何正确求助?哪些是违规求助? 4444140
关于积分的说明 13832167
捐赠科研通 4328118
什么是DOI,文献DOI怎么找? 2375950
邀请新用户注册赠送积分活动 1371278
关于科研通互助平台的介绍 1336386