MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson’s disease diagnosis

计算机科学 聚类分析 聚类系数 图形 节点(物理) 特征学习 人工智能 模块化(生物学) 复杂网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学 工程类 生物 万维网 结构工程 遗传学
作者
Liqin Huang,Xiaofang Ye,Mingjing Yang,Lin Pan,Shao hua Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106308-106308 被引量:23
标识
DOI:10.1016/j.compbiomed.2022.106308
摘要

The identification of early-stage Parkinson's disease (PD) is important for the effective management of patients, affecting their treatment and prognosis. Recently, structural brain networks (SBNs) have been used to diagnose PD. However, how to mine abnormal patterns from high-dimensional SBNs has been a challenge due to the complex topology of the brain. Meanwhile, the existing prediction mechanisms of deep learning models are often complicated, and it is difficult to extract effective interpretations. In addition, most works only focus on the classification of imaging and ignore clinical scores in practical applications, which limits the ability of the model. Inspired by the regional modularity of SBNs, we adopted graph learning from the perspective of node clustering to construct an interpretable framework for PD classification.In this study, a multi-task graph structure learning framework based on node clustering (MNC-Net) is proposed for the early diagnosis of PD. Specifically, we modeled complex SBNs into modular graphs that facilitated the representation learning of abnormal patterns. Traditional graph neural networks are optimized through graph structure learning based on node clustering, which identifies potentially abnormal brain regions and reduces the impact of irrelevant noise. Furthermore, we employed a regression task to link clinical scores to disease classification, and incorporated latent domain information into model training through multi-task learning.We validated the proposed approach on the Parkinsons Progression Markers Initiative dataset. Experimental results showed that our MNC-Net effectively separated the early-stage PD from healthy controls(HC) with an accuracy of 95.5%. The t-SNE figures have showed that our graph structure learning method can capture more efficient and discriminatory features. Furthermore, node clustering parameters were used as important weights to extract salient task-related brain regions(ROIs). These ROIs are involved in the development of mood disorders, tremors, imbalances and other symptoms, highlighting the importance of memory, language and mild motor function in early PD. In addition, statistical results from clinical scores confirmed that our model could capture abnormal connectivity that was significantly different between PD and HC. These results are consistent with previous studies, demonstrating the interpretability of our methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒完成签到,获得积分10
刚刚
ayuelei发布了新的文献求助10
刚刚
奥特曼发布了新的文献求助10
刚刚
烂漫的水彤完成签到,获得积分10
刚刚
hhhhxxxx完成签到,获得积分10
刚刚
十月木樨完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
白日梦想家完成签到 ,获得积分10
2秒前
wujingshuai完成签到,获得积分10
3秒前
沉默的驳完成签到 ,获得积分10
3秒前
3秒前
pluto应助缥缈的妙竹采纳,获得10
3秒前
上喜阿蕾完成签到,获得积分10
4秒前
拉长的傲旋完成签到,获得积分10
4秒前
5秒前
HJY发布了新的文献求助10
5秒前
5秒前
LHJZS发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助50
5秒前
科研通AI6应助水牛采纳,获得30
6秒前
6秒前
牛牛发布了新的文献求助10
6秒前
7秒前
脸小呆呆完成签到 ,获得积分10
7秒前
7秒前
在学一会完成签到,获得积分10
8秒前
科研通AI5应助包包包采纳,获得10
8秒前
8秒前
MaSaR完成签到,获得积分10
8秒前
today完成签到 ,获得积分10
9秒前
9秒前
cai应助无敌学术王王采纳,获得10
9秒前
zy3637发布了新的文献求助10
10秒前
10秒前
ttong完成签到,获得积分10
11秒前
heqingqing完成签到,获得积分10
11秒前
12秒前
shisui发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953577
求助须知:如何正确求助?哪些是违规求助? 4216141
关于积分的说明 13117378
捐赠科研通 3998227
什么是DOI,文献DOI怎么找? 2188234
邀请新用户注册赠送积分活动 1203471
关于科研通互助平台的介绍 1116040