MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson’s disease diagnosis

计算机科学 聚类分析 聚类系数 图形 节点(物理) 特征学习 人工智能 模块化(生物学) 复杂网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学 工程类 生物 结构工程 万维网 遗传学
作者
Liqin Huang,Xiaofang Ye,Mingjing Yang,Lin Pan,Shao hua Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106308-106308 被引量:21
标识
DOI:10.1016/j.compbiomed.2022.106308
摘要

The identification of early-stage Parkinson's disease (PD) is important for the effective management of patients, affecting their treatment and prognosis. Recently, structural brain networks (SBNs) have been used to diagnose PD. However, how to mine abnormal patterns from high-dimensional SBNs has been a challenge due to the complex topology of the brain. Meanwhile, the existing prediction mechanisms of deep learning models are often complicated, and it is difficult to extract effective interpretations. In addition, most works only focus on the classification of imaging and ignore clinical scores in practical applications, which limits the ability of the model. Inspired by the regional modularity of SBNs, we adopted graph learning from the perspective of node clustering to construct an interpretable framework for PD classification.In this study, a multi-task graph structure learning framework based on node clustering (MNC-Net) is proposed for the early diagnosis of PD. Specifically, we modeled complex SBNs into modular graphs that facilitated the representation learning of abnormal patterns. Traditional graph neural networks are optimized through graph structure learning based on node clustering, which identifies potentially abnormal brain regions and reduces the impact of irrelevant noise. Furthermore, we employed a regression task to link clinical scores to disease classification, and incorporated latent domain information into model training through multi-task learning.We validated the proposed approach on the Parkinsons Progression Markers Initiative dataset. Experimental results showed that our MNC-Net effectively separated the early-stage PD from healthy controls(HC) with an accuracy of 95.5%. The t-SNE figures have showed that our graph structure learning method can capture more efficient and discriminatory features. Furthermore, node clustering parameters were used as important weights to extract salient task-related brain regions(ROIs). These ROIs are involved in the development of mood disorders, tremors, imbalances and other symptoms, highlighting the importance of memory, language and mild motor function in early PD. In addition, statistical results from clinical scores confirmed that our model could capture abnormal connectivity that was significantly different between PD and HC. These results are consistent with previous studies, demonstrating the interpretability of our methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搬砖一号发布了新的文献求助10
6秒前
脑洞疼应助xr采纳,获得10
7秒前
打打应助xr采纳,获得10
7秒前
慕青应助xr采纳,获得10
7秒前
打打应助xr采纳,获得10
7秒前
GX完成签到,获得积分10
7秒前
沉默安波发布了新的文献求助10
9秒前
田様应助研友_Ze0vBn采纳,获得10
12秒前
香蕉觅云应助无力大白菜采纳,获得10
13秒前
搬砖一号完成签到,获得积分20
15秒前
旨酒欣欣应助牛牛眉目采纳,获得10
16秒前
16秒前
蜂蜜完成签到,获得积分10
18秒前
张星星完成签到 ,获得积分10
19秒前
21秒前
独特纸飞机完成签到 ,获得积分10
21秒前
小马同学发布了新的文献求助30
22秒前
惜缘灬楪祈完成签到,获得积分10
22秒前
22秒前
暴躁的嘉懿完成签到,获得积分10
23秒前
乐乱完成签到 ,获得积分10
26秒前
yls发布了新的文献求助10
27秒前
28秒前
庸人自扰完成签到,获得积分10
29秒前
32秒前
33秒前
星辰大海应助yls采纳,获得10
34秒前
公孙世往发布了新的文献求助10
35秒前
鱼鱼完成签到 ,获得积分20
35秒前
研友_Ze0vBn发布了新的文献求助10
37秒前
nan完成签到,获得积分10
37秒前
ZYZYbigZY发布了新的文献求助10
38秒前
21完成签到 ,获得积分10
39秒前
大模型应助无力大白菜采纳,获得10
39秒前
听闻墨笙完成签到,获得积分10
40秒前
柔弱山芙完成签到,获得积分10
41秒前
牛牛眉目完成签到,获得积分10
42秒前
亦安完成签到,获得积分10
46秒前
Rondab应助Alex采纳,获得200
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343