MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson’s disease diagnosis

计算机科学 聚类分析 聚类系数 图形 节点(物理) 特征学习 人工智能 模块化(生物学) 复杂网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学 工程类 生物 结构工程 万维网 遗传学
作者
Liqin Huang,Xiaofang Ye,Mingjing Yang,Lin Pan,Shao hua Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106308-106308 被引量:21
标识
DOI:10.1016/j.compbiomed.2022.106308
摘要

The identification of early-stage Parkinson's disease (PD) is important for the effective management of patients, affecting their treatment and prognosis. Recently, structural brain networks (SBNs) have been used to diagnose PD. However, how to mine abnormal patterns from high-dimensional SBNs has been a challenge due to the complex topology of the brain. Meanwhile, the existing prediction mechanisms of deep learning models are often complicated, and it is difficult to extract effective interpretations. In addition, most works only focus on the classification of imaging and ignore clinical scores in practical applications, which limits the ability of the model. Inspired by the regional modularity of SBNs, we adopted graph learning from the perspective of node clustering to construct an interpretable framework for PD classification.In this study, a multi-task graph structure learning framework based on node clustering (MNC-Net) is proposed for the early diagnosis of PD. Specifically, we modeled complex SBNs into modular graphs that facilitated the representation learning of abnormal patterns. Traditional graph neural networks are optimized through graph structure learning based on node clustering, which identifies potentially abnormal brain regions and reduces the impact of irrelevant noise. Furthermore, we employed a regression task to link clinical scores to disease classification, and incorporated latent domain information into model training through multi-task learning.We validated the proposed approach on the Parkinsons Progression Markers Initiative dataset. Experimental results showed that our MNC-Net effectively separated the early-stage PD from healthy controls(HC) with an accuracy of 95.5%. The t-SNE figures have showed that our graph structure learning method can capture more efficient and discriminatory features. Furthermore, node clustering parameters were used as important weights to extract salient task-related brain regions(ROIs). These ROIs are involved in the development of mood disorders, tremors, imbalances and other symptoms, highlighting the importance of memory, language and mild motor function in early PD. In addition, statistical results from clinical scores confirmed that our model could capture abnormal connectivity that was significantly different between PD and HC. These results are consistent with previous studies, demonstrating the interpretability of our methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的悟空完成签到 ,获得积分10
1秒前
susan完成签到,获得积分10
2秒前
0029完成签到,获得积分10
4秒前
Aki完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
LXR完成签到,获得积分10
9秒前
thchiang发布了新的文献求助10
10秒前
李健应助北城采纳,获得10
10秒前
WDK发布了新的文献求助10
10秒前
11秒前
轻松的贞发布了新的文献求助10
11秒前
医学生Mavis完成签到,获得积分10
13秒前
nextconnie完成签到,获得积分10
13秒前
汉堡包应助yyj采纳,获得10
14秒前
zqh740发布了新的文献求助30
15秒前
16秒前
NexusExplorer应助pharmstudent采纳,获得10
17秒前
熊遇蜜完成签到,获得积分10
19秒前
panzer完成签到,获得积分10
20秒前
21秒前
lyt发布了新的文献求助10
22秒前
六月毕业关注了科研通微信公众号
23秒前
petrichor应助程程采纳,获得10
24秒前
圆儿完成签到 ,获得积分10
24秒前
潇洒的灵萱完成签到,获得积分10
24秒前
24秒前
24秒前
Toooo完成签到,获得积分10
25秒前
zqh740完成签到,获得积分10
25秒前
科研通AI5应助thchiang采纳,获得10
25秒前
lizzzzzz完成签到,获得积分10
26秒前
yyj发布了新的文献求助10
26秒前
请和我吃饭完成签到,获得积分10
27秒前
北城发布了新的文献求助10
28秒前
勤恳冰淇淋完成签到 ,获得积分10
29秒前
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824