Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network

期限(时间) 人工神经网络 电力系统 功率(物理) 计算机科学 时间序列 人工智能 机器学习 物理 量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
出处
期刊:Energy and Buildings [Elsevier]
卷期号:279: 112666-112666 被引量:185
标识
DOI:10.1016/j.enbuild.2022.112666
摘要

Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣蜩阿六完成签到,获得积分10
刚刚
六子发布了新的文献求助10
1秒前
Tperm发布了新的文献求助10
2秒前
Orange应助surain采纳,获得10
2秒前
搜集达人应助kk采纳,获得10
2秒前
迷失自我的麻瓜完成签到,获得积分10
2秒前
sophia完成签到,获得积分10
5秒前
小巧向秋发布了新的文献求助10
5秒前
6秒前
9秒前
香蕉觅云应助怕黑明雪采纳,获得10
9秒前
sophia发布了新的文献求助10
9秒前
ahoshuo发布了新的文献求助10
10秒前
大母大发布了新的文献求助10
10秒前
12秒前
早点发SCI完成签到,获得积分10
12秒前
12秒前
13秒前
Asystasia7完成签到,获得积分10
14秒前
核桃发布了新的文献求助10
14秒前
JamesPei应助认真的方盒采纳,获得10
15秒前
小屁孩发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
Efaith发布了新的文献求助10
16秒前
和谐青柏应助诚心的傲芙采纳,获得10
17秒前
文木完成签到,获得积分10
17秒前
wqsnlyq完成签到,获得积分10
18秒前
18秒前
幸运小狗发布了新的文献求助10
19秒前
24秒前
24秒前
大模型应助默默善愁采纳,获得10
24秒前
wenzheng完成签到 ,获得积分10
25秒前
晨曦发布了新的文献求助10
25秒前
陈政豪完成签到,获得积分10
25秒前
冬雨清晨发布了新的文献求助30
25秒前
小屁孩完成签到,获得积分10
25秒前
小白应助Suo采纳,获得10
26秒前
CodeCraft应助董先生采纳,获得10
26秒前
29秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655