Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network

期限(时间) 人工神经网络 电力系统 功率(物理) 计算机科学 时间序列 人工智能 机器学习 物理 量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:279: 112666-112666 被引量:136
标识
DOI:10.1016/j.enbuild.2022.112666
摘要

Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮夕梧桐完成签到,获得积分10
1秒前
hang完成签到,获得积分10
6秒前
zho发布了新的文献求助10
7秒前
笨笨的蓝天完成签到,获得积分10
8秒前
bkagyin应助何博采纳,获得10
9秒前
ri_290完成签到,获得积分10
9秒前
10秒前
等待的花卷完成签到 ,获得积分10
11秒前
www完成签到 ,获得积分10
11秒前
孔乙己完成签到,获得积分10
12秒前
执意完成签到 ,获得积分10
12秒前
Zzz完成签到 ,获得积分10
13秒前
冰川与星辰完成签到,获得积分10
14秒前
黑摄会阿Fay完成签到,获得积分10
17秒前
明理宛秋完成签到 ,获得积分10
18秒前
指导灰完成签到 ,获得积分10
19秒前
苻人英完成签到,获得积分10
21秒前
lilili完成签到,获得积分10
25秒前
苗苗完成签到,获得积分10
27秒前
可爱的函函应助康达采纳,获得20
29秒前
ShellyMaya完成签到 ,获得积分10
31秒前
67完成签到 ,获得积分10
31秒前
32秒前
小高飞飞飞完成签到 ,获得积分10
35秒前
zzzyyyuuu完成签到 ,获得积分10
35秒前
Temperature发布了新的文献求助10
37秒前
Andrew02完成签到,获得积分10
39秒前
41秒前
饱满的大碗完成签到 ,获得积分10
42秒前
aixiaoming0503完成签到,获得积分10
42秒前
surgeon慧完成签到,获得积分10
43秒前
阿财完成签到,获得积分10
43秒前
44秒前
111完成签到 ,获得积分10
47秒前
47秒前
HH发布了新的文献求助10
48秒前
50秒前
51秒前
山丘完成签到,获得积分10
52秒前
大大怪完成签到 ,获得积分10
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268