Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network

期限(时间) 人工神经网络 电力系统 功率(物理) 计算机科学 时间序列 人工智能 机器学习 物理 量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
出处
期刊:Energy and Buildings [Elsevier]
卷期号:279: 112666-112666 被引量:87
标识
DOI:10.1016/j.enbuild.2022.112666
摘要

Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周周完成签到,获得积分10
刚刚
研友_Y59785完成签到,获得积分10
1秒前
zxvcbnm发布了新的文献求助10
2秒前
3秒前
3秒前
机智香水发布了新的文献求助50
3秒前
3秒前
4秒前
科研通AI2S应助稳重的宝贝采纳,获得10
4秒前
Horizon完成签到,获得积分10
5秒前
疯狂的娃哈哈完成签到 ,获得积分10
5秒前
顾矜应助扭一扭泡一泡采纳,获得10
5秒前
紫易发布了新的文献求助10
5秒前
小小杨完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
charles发布了新的文献求助30
7秒前
坚强的严青完成签到,获得积分20
8秒前
iufan发布了新的文献求助10
8秒前
8秒前
乐观的雁易完成签到 ,获得积分10
9秒前
9秒前
jiysh完成签到,获得积分0
9秒前
充电宝应助A哇咔咔咔采纳,获得10
9秒前
朴素的傲菡完成签到,获得积分10
11秒前
上官若男应助diupapa采纳,获得30
11秒前
wxwx发布了新的文献求助10
11秒前
11秒前
12秒前
徐生发布了新的文献求助10
12秒前
volzzz完成签到,获得积分10
12秒前
斯文败类应助wangp采纳,获得10
12秒前
14秒前
14秒前
Lucas应助坚强的严青采纳,获得10
14秒前
15秒前
15秒前
shine关注了科研通微信公众号
15秒前
桐桐应助nater4ver采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825