Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network

期限(时间) 人工神经网络 电力系统 功率(物理) 计算机科学 时间序列 人工智能 机器学习 物理 量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
出处
期刊:Energy and Buildings [Elsevier]
卷期号:279: 112666-112666 被引量:185
标识
DOI:10.1016/j.enbuild.2022.112666
摘要

Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤单不如流浪完成签到,获得积分10
1秒前
牧水之完成签到 ,获得积分10
2秒前
杨颖完成签到,获得积分10
2秒前
柳贯一发布了新的文献求助30
2秒前
God完成签到,获得积分10
3秒前
香蕉觅云应助现实的一天采纳,获得10
3秒前
3秒前
山月系晚星完成签到,获得积分10
4秒前
花火易逝发布了新的文献求助10
4秒前
茉行完成签到,获得积分10
4秒前
4秒前
5秒前
关于我发布了新的文献求助10
5秒前
平凡完成签到,获得积分10
5秒前
魏你大爷完成签到,获得积分10
5秒前
莴苣完成签到,获得积分10
6秒前
wxf完成签到,获得积分10
6秒前
6秒前
过时的沛槐完成签到,获得积分10
6秒前
6秒前
科研通AI6应助碧琴采纳,获得10
6秒前
分析完成签到 ,获得积分10
7秒前
生活散文发布了新的文献求助10
7秒前
7秒前
7秒前
陈圈圈完成签到,获得积分10
7秒前
Orange应助研友_LBorkn采纳,获得10
7秒前
炙热笑旋完成签到,获得积分10
8秒前
田様应助ding采纳,获得10
8秒前
喵喵喵完成签到,获得积分10
8秒前
SonRisa完成签到,获得积分10
8秒前
哭泣的花卷完成签到,获得积分10
8秒前
9秒前
9秒前
哈儿的跟班完成签到,获得积分10
9秒前
9秒前
潮湿梦完成签到,获得积分10
9秒前
关耳发布了新的文献求助10
10秒前
花火易逝完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977