期限(时间)
人工神经网络
电力系统
功率(物理)
计算机科学
时间序列
人工智能
机器学习
物理
量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
标识
DOI:10.1016/j.enbuild.2022.112666
摘要
Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
科研通智能强力驱动
Strongly Powered by AbleSci AI