已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network

期限(时间) 人工神经网络 电力系统 功率(物理) 计算机科学 时间序列 人工智能 机器学习 物理 量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
出处
期刊:Energy and Buildings [Elsevier]
卷期号:279: 112666-112666 被引量:185
标识
DOI:10.1016/j.enbuild.2022.112666
摘要

Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摄氏度26完成签到,获得积分10
刚刚
生生完成签到,获得积分10
1秒前
迷路荷花完成签到,获得积分20
1秒前
2秒前
摄氏度26发布了新的文献求助10
3秒前
米奇妙妙屋小米完成签到 ,获得积分10
4秒前
斯文败类应助仁爱羊采纳,获得30
5秒前
醉熏的灵发布了新的文献求助20
6秒前
Lucas应助yuanyuan采纳,获得10
6秒前
文艺明杰发布了新的文献求助10
7秒前
Fx完成签到,获得积分10
7秒前
Dryad完成签到,获得积分10
8秒前
米奇妙妙屋小米关注了科研通微信公众号
9秒前
领导范儿应助Why采纳,获得10
9秒前
香蕉觅云应助许个愿采纳,获得10
10秒前
11秒前
bkagyin应助lzx采纳,获得10
12秒前
sxx发布了新的文献求助30
15秒前
17秒前
17秒前
酷波er应助you采纳,获得10
20秒前
jewel9完成签到,获得积分10
20秒前
小宋爱科研完成签到 ,获得积分10
20秒前
21秒前
李伟峰发布了新的文献求助10
22秒前
22秒前
26秒前
所所应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
卿年完成签到,获得积分10
28秒前
Wind应助文静的人雄采纳,获得10
28秒前
慕青应助俏皮元珊采纳,获得10
29秒前
29秒前
上官若男应助瘦瘦的秋柔采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685187
关于积分的说明 14838118
捐赠科研通 4668833
什么是DOI,文献DOI怎么找? 2538056
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816