重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

An improved DenseNet model to classify the damage caused by cotton aphid

卷积神经网络 计算机科学 有害生物分析 人工智能 领域(数学) 模式识别(心理学) 数学 生物 植物 纯数学
作者
Wenxia Bao,Tao Cheng,Xin‐Gen Zhou,Wei Guo,Yuanyuan Wang,Xuan Zhang,Hongbo Qiao,Dongyan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107485-107485 被引量:25
标识
DOI:10.1016/j.compag.2022.107485
摘要

Accurate and timely detection and classification of cotton aphid damage are essential for the control of cotton aphids, a major pest in cotton in China and many other countries. However, use of existing convolutional neural networks (CNN) to classify the levels of damage caused by the pest is undesirable because of their low accuracy caused by complex field backgrounds and different lighting conditions. In this study, a lightweight classification network, CA_DenseNet_BC_40, with improved DenseNet was proposed by introducing the network architecture of DenseNet and Coordinate Attention module for classifying the levels of damage caused by cotton aphids in a natural field environment. The results of analyses show that the CA_DenseNet_BC_40 network outperformed the existing networks ResNet50, ShuffleNet, Ghost, MobileNetv3, and DenseNet on the accuracy of classification for cotton aphid damages. The classification accuracy of the proposed network reached as high as 97.3 % and the size of parameters was only 0.18 M that was smaller than those of the lightweight convolutional neural network models such as Mobinenet and GhostNet. The proposed model can be used to automatically detect and classify the levels of damage caused by cotton aphids in natural field conditions with a high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助黄钦清采纳,获得10
1秒前
1秒前
许蹦跶完成签到,获得积分10
1秒前
Goolk关注了科研通微信公众号
2秒前
英俊的铭应助李周采纳,获得10
2秒前
榴莲奶黄包完成签到,获得积分10
2秒前
汪金完成签到,获得积分10
2秒前
纯真电源发布了新的文献求助10
2秒前
ding应助圈圈采纳,获得10
3秒前
天才关注了科研通微信公众号
3秒前
3秒前
orixero应助张铭娟采纳,获得10
3秒前
franken完成签到,获得积分10
3秒前
健忘之卉完成签到,获得积分10
3秒前
心悦臣服发布了新的文献求助30
4秒前
NexusExplorer应助余语羽采纳,获得10
4秒前
bxbxbx发布了新的文献求助10
4秒前
邵开山完成签到,获得积分10
4秒前
好旺发布了新的文献求助10
5秒前
5秒前
5秒前
zzyzz完成签到 ,获得积分10
5秒前
xiaojie发布了新的文献求助10
5秒前
6秒前
启原完成签到,获得积分10
7秒前
充电宝应助新火新茶采纳,获得10
7秒前
打打应助笑点低的以亦采纳,获得10
7秒前
望北发布了新的文献求助10
7秒前
uuu发布了新的文献求助10
7秒前
语芙发布了新的文献求助10
7秒前
酷波er应助求知采纳,获得10
8秒前
流飞发布了新的文献求助10
8秒前
8秒前
科目三应助小掰采纳,获得10
8秒前
bkagyin应助牛与马采纳,获得10
9秒前
Refuel发布了新的文献求助10
9秒前
painting发布了新的文献求助10
9秒前
9秒前
avalanche应助ZXD1989采纳,获得50
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567