Models for the Interplay of Mechanics, Electrochemistry, Thermodynamics, and Kinetics in Lithium-Ion Batteries

电解质 蠕动 材料科学 锂(药物) 热力学 压力(语言学) 电化学 电化学动力学 电极 化学物理 化学 复合材料 物理化学 物理 医学 内分泌学 哲学 语言学
作者
V.S. Deshpande,Robert M. McMeeking
出处
期刊:Applied Mechanics Reviews [ASME International]
卷期号:75 (1) 被引量:27
标识
DOI:10.1115/1.4056289
摘要

Abstract We review a broad range of topics related to the interplay of electrochemistry and mechanics in all solid-state batteries. The modeling frameworks that exist in the literature are varied in terms of their sophistication and ability to capture critical observations. Modeling frameworks for diffusion induced stress and fracture due to lithiation swelling and shrinkage in storage materials for the cathodes are well-established along with models for lithium-ion transport in solid electrolytes. Similarly, aspects of the effect of stress on the redox reactions at the Li metal/electrolyte interface are well-understood. These models typically modify Butler–Volmer kinetics but neglect the effect of creep or other plastic deformations of the metal electrode on the interface kinetics. Nevertheless, they successfully describe the roughening of the metal electrode/electrolyte interface during deposition or plating. By contrast, Butler–Volmer kinetics accounting only for the interfacial stress are unable to predict voids that have been observed to form in the metal electrode and we discuss a hypothesis that creep deformation of the metal electrode has a more fundamental effect on the redox reactions. Similarly, models for the nucleation and growth of lithium filaments in solid electrolytes are also inconsistent with recent observations which suggest that cracks in solid electrolytes are only partially filled with lithium metal. We conclude by summarizing aspects of the interplay of electrochemistry and mechanics in all solid-state batteries that are well-understood and areas where significant open questions remain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助无糖的问题采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
yk应助科研通管家采纳,获得10
3秒前
MchemG应助科研通管家采纳,获得10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
yk应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
suyou发布了新的文献求助10
5秒前
千俞完成签到 ,获得积分10
5秒前
5秒前
wangli发布了新的文献求助100
7秒前
CHER驳回了思源应助
7秒前
量子星尘发布了新的文献求助10
8秒前
bkagyin应助研友_Z33EGZ采纳,获得10
9秒前
YANG发布了新的文献求助10
10秒前
哇samm完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
圣诞结发布了新的文献求助10
13秒前
羽翼应助爱听歌时光采纳,获得10
15秒前
lingxi发布了新的文献求助10
16秒前
Ocean完成签到,获得积分10
16秒前
您疼肚完成签到,获得积分20
16秒前
17秒前
17秒前
ljy1111发布了新的文献求助10
17秒前
细心冬日完成签到 ,获得积分10
18秒前
您疼肚发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663558
求助须知:如何正确求助?哪些是违规求助? 4851248
关于积分的说明 15104964
捐赠科研通 4821855
什么是DOI,文献DOI怎么找? 2580993
邀请新用户注册赠送积分活动 1535206
关于科研通互助平台的介绍 1493587