光催化
铀
氧气
热电效应
人口
材料科学
催化作用
化学工程
基质(水族馆)
污染
电子
纳米技术
光化学
化学
物理
有机化学
冶金
核物理学
海洋学
人口学
社会学
热力学
生物
工程类
地质学
生态学
作者
Pan He,Ling Zhang,Linzhen Wu,Shunhong Xiao,Xin Ren,Rong He,Xiaoyong Yang,Ruixi Liu,Tao Duan
标识
DOI:10.1016/j.apcatb.2022.122087
摘要
The conversion of soluble U(VI) to relatively immobilized U(IV) by photocatalytic techniques is considered to be the most effective method to prevent uranium contamination. Herein, a novel photocatalyst (TiO2−x/1T-MoS2) that combines photochemistry and thermoelectric physics is reported. The photocatalyst can use oxygen vacancies to briefly capture surrounding photogenerated electrons to improve the photogenerated carrier separation rate. Additionally, a large thermoelectric potential difference can be generated through a temperature gradient in the liquid environment, thereby changing the high-energy electron population on the substrate, and achieving the efficient capture of U(VI) species in extreme environments. The experimental results show that the TiO2−x/1T-MoS2 photocatalyst can remove more than 98% of U(VI) within 60 min without adding any sacrificial agent, and maintain a good U(VI) removal ratio even in a strong acid/base environment. This work will provide a reference for designing heterogeneous catalysts with both high catalytic activity and practicality for U(VI) photoreduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI