Protein encoder: An autoencoder-based ensemble feature selection scheme to predict protein secondary structure

特征选择 自编码 计算机科学 模式识别(心理学) 随机森林 人工智能 特征(语言学) 单变量 数据挖掘 机器学习 人工神经网络 多元统计 语言学 哲学
作者
Uzma,Usama Manzoor,Zahid Halim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119081-119081 被引量:9
标识
DOI:10.1016/j.eswa.2022.119081
摘要

Proteins play a vital role in the human body as they perform important metabolic tasks. Experimental identification of protein structure is expensive and time consuming. The prediction of protein secondary structure is significant to identify the protein tertiary structure and its folds. The feature subset selection from high dimensional protein primary sequence is a key to improve the accuracy of Protein Secondary Structure Prediction (PSSP). Therefore, it is essential to select the relevant features from high dimensional data to predict the protein secondary structure. This work presents a novel method for the PSSP problem based on a two-phase feature selection technique. The first stage utilizes an unsupervised autoencoder for feature extractions. Whereas, the second stage is an ensemble of three feature selection methods, namely, generic univariate select, recursive feature elimination, and Pearson's correlation. This phase combines multiple feature subsets using mutual information to select the optimum feature subset. For classification, different resultant subset features are used. These include random forest, decision tree, and multilayer perceptron. Two sets of experiments are performed on five datasets for the assessment of proposed work. The proposed solution is compared with three state-of-the-art methods based on Q3 accuracy, Q8 accuracy, and segment overlap score. Obtained results show that the proposed framework performs better in the majority of the cases than the past contributions. The proposed framework achieves Q8 accuracies of 82%, 80%, 79%, 73%, and 74% and Q3 accuracies of 90%, 90%, 92%, 79%, and 74% on CB6133, CB6133-filtered, CB513, CASP10, and CASP11 datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DELI完成签到 ,获得积分0
刚刚
酷波er应助Berniece采纳,获得10
1秒前
颖南婉发布了新的文献求助10
1秒前
年华完成签到,获得积分10
1秒前
在水一方应助懒洋洋采纳,获得10
2秒前
2秒前
2秒前
NanFeng完成签到,获得积分10
3秒前
ZJX完成签到 ,获得积分10
4秒前
tutuee完成签到,获得积分10
4秒前
4秒前
炙热晓露发布了新的文献求助10
6秒前
夜願发布了新的文献求助30
7秒前
7秒前
deway发布了新的文献求助10
8秒前
虾饺核发布了新的文献求助10
8秒前
8秒前
9秒前
mahuahua发布了新的文献求助10
9秒前
Gavin完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
mayucong完成签到,获得积分10
10秒前
DXX完成签到,获得积分10
10秒前
大饼卷肉完成签到,获得积分10
10秒前
LaTeXer给浮生如梦的求助进行了留言
11秒前
李健应助苗条桐采纳,获得10
12秒前
mt完成签到,获得积分20
13秒前
阿峤发布了新的文献求助10
13秒前
ailemonmint发布了新的文献求助10
13秒前
14秒前
Xiaosi完成签到,获得积分10
14秒前
yy完成签到,获得积分10
14秒前
Lucas应助Haimimi采纳,获得10
14秒前
WTQ发布了新的文献求助20
15秒前
16秒前
16秒前
jiulei完成签到,获得积分10
17秒前
17秒前
yuedingta应助影像组学采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911379
求助须知:如何正确求助?哪些是违规求助? 4186919
关于积分的说明 13001902
捐赠科研通 3954732
什么是DOI,文献DOI怎么找? 2168427
邀请新用户注册赠送积分活动 1186877
关于科研通互助平台的介绍 1094208