亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Protein encoder: An autoencoder-based ensemble feature selection scheme to predict protein secondary structure

特征选择 自编码 计算机科学 模式识别(心理学) 随机森林 人工智能 特征(语言学) 单变量 数据挖掘 机器学习 人工神经网络 多元统计 语言学 哲学
作者
Uzma,Usama Manzoor,Zahid Halim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119081-119081 被引量:9
标识
DOI:10.1016/j.eswa.2022.119081
摘要

Proteins play a vital role in the human body as they perform important metabolic tasks. Experimental identification of protein structure is expensive and time consuming. The prediction of protein secondary structure is significant to identify the protein tertiary structure and its folds. The feature subset selection from high dimensional protein primary sequence is a key to improve the accuracy of Protein Secondary Structure Prediction (PSSP). Therefore, it is essential to select the relevant features from high dimensional data to predict the protein secondary structure. This work presents a novel method for the PSSP problem based on a two-phase feature selection technique. The first stage utilizes an unsupervised autoencoder for feature extractions. Whereas, the second stage is an ensemble of three feature selection methods, namely, generic univariate select, recursive feature elimination, and Pearson's correlation. This phase combines multiple feature subsets using mutual information to select the optimum feature subset. For classification, different resultant subset features are used. These include random forest, decision tree, and multilayer perceptron. Two sets of experiments are performed on five datasets for the assessment of proposed work. The proposed solution is compared with three state-of-the-art methods based on Q3 accuracy, Q8 accuracy, and segment overlap score. Obtained results show that the proposed framework performs better in the majority of the cases than the past contributions. The proposed framework achieves Q8 accuracies of 82%, 80%, 79%, 73%, and 74% and Q3 accuracies of 90%, 90%, 92%, 79%, and 74% on CB6133, CB6133-filtered, CB513, CASP10, and CASP11 datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
懒癌晚期发布了新的文献求助10
8秒前
能干青发布了新的文献求助10
13秒前
能干青完成签到,获得积分10
21秒前
科研通AI6应助聪明怜阳采纳,获得10
25秒前
30秒前
30秒前
懒癌晚期发布了新的文献求助10
35秒前
lt发布了新的文献求助10
35秒前
oneshamok完成签到 ,获得积分10
37秒前
华仔应助Yashyi采纳,获得10
46秒前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Yashyi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
与山发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
liubai发布了新的文献求助10
3分钟前
3分钟前
JamesPei应助旺旺采纳,获得10
3分钟前
3分钟前
liubai发布了新的文献求助50
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590513
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632750
什么是DOI,文献DOI怎么找? 2532806
邀请新用户注册赠送积分活动 1501296
关于科研通互助平台的介绍 1468687