Protein encoder: An autoencoder-based ensemble feature selection scheme to predict protein secondary structure

特征选择 自编码 计算机科学 模式识别(心理学) 随机森林 人工智能 特征(语言学) 单变量 数据挖掘 机器学习 人工神经网络 多元统计 语言学 哲学
作者
Uzma,Usama Manzoor,Zahid Halim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119081-119081 被引量:9
标识
DOI:10.1016/j.eswa.2022.119081
摘要

Proteins play a vital role in the human body as they perform important metabolic tasks. Experimental identification of protein structure is expensive and time consuming. The prediction of protein secondary structure is significant to identify the protein tertiary structure and its folds. The feature subset selection from high dimensional protein primary sequence is a key to improve the accuracy of Protein Secondary Structure Prediction (PSSP). Therefore, it is essential to select the relevant features from high dimensional data to predict the protein secondary structure. This work presents a novel method for the PSSP problem based on a two-phase feature selection technique. The first stage utilizes an unsupervised autoencoder for feature extractions. Whereas, the second stage is an ensemble of three feature selection methods, namely, generic univariate select, recursive feature elimination, and Pearson's correlation. This phase combines multiple feature subsets using mutual information to select the optimum feature subset. For classification, different resultant subset features are used. These include random forest, decision tree, and multilayer perceptron. Two sets of experiments are performed on five datasets for the assessment of proposed work. The proposed solution is compared with three state-of-the-art methods based on Q3 accuracy, Q8 accuracy, and segment overlap score. Obtained results show that the proposed framework performs better in the majority of the cases than the past contributions. The proposed framework achieves Q8 accuracies of 82%, 80%, 79%, 73%, and 74% and Q3 accuracies of 90%, 90%, 92%, 79%, and 74% on CB6133, CB6133-filtered, CB513, CASP10, and CASP11 datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
轻松念露发布了新的文献求助50
1秒前
Hello应助大致若鱼采纳,获得10
1秒前
陈锦鲤完成签到,获得积分10
2秒前
2秒前
Jacky举报心悦求助涉嫌违规
2秒前
勤恳的小松鼠完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
玛卡巴卡完成签到,获得积分10
3秒前
斯文败类应助带回家反馈采纳,获得10
3秒前
透明人发布了新的文献求助10
4秒前
科研通AI6应助Lirui2333采纳,获得10
5秒前
5秒前
小宝发布了新的文献求助30
5秒前
5秒前
6秒前
十二完成签到,获得积分10
6秒前
7秒前
身为风帆发布了新的文献求助10
7秒前
mqq完成签到,获得积分10
7秒前
栀鸢完成签到,获得积分10
7秒前
灰灰给灰灰的求助进行了留言
8秒前
充电宝应助倩倩采纳,获得10
8秒前
healer完成签到,获得积分20
9秒前
9秒前
9秒前
cc完成签到,获得积分10
9秒前
10秒前
十二发布了新的文献求助10
11秒前
12秒前
mqq发布了新的文献求助10
12秒前
能干的邹发布了新的文献求助10
13秒前
star完成签到,获得积分20
13秒前
13秒前
Tonson应助xueshudagongzai采纳,获得10
13秒前
枫竹轩完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997