Protein encoder: An autoencoder-based ensemble feature selection scheme to predict protein secondary structure

特征选择 自编码 计算机科学 模式识别(心理学) 随机森林 人工智能 特征(语言学) 单变量 数据挖掘 机器学习 人工神经网络 多元统计 语言学 哲学
作者
Uzma,Usama Manzoor,Zahid Halim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119081-119081 被引量:9
标识
DOI:10.1016/j.eswa.2022.119081
摘要

Proteins play a vital role in the human body as they perform important metabolic tasks. Experimental identification of protein structure is expensive and time consuming. The prediction of protein secondary structure is significant to identify the protein tertiary structure and its folds. The feature subset selection from high dimensional protein primary sequence is a key to improve the accuracy of Protein Secondary Structure Prediction (PSSP). Therefore, it is essential to select the relevant features from high dimensional data to predict the protein secondary structure. This work presents a novel method for the PSSP problem based on a two-phase feature selection technique. The first stage utilizes an unsupervised autoencoder for feature extractions. Whereas, the second stage is an ensemble of three feature selection methods, namely, generic univariate select, recursive feature elimination, and Pearson's correlation. This phase combines multiple feature subsets using mutual information to select the optimum feature subset. For classification, different resultant subset features are used. These include random forest, decision tree, and multilayer perceptron. Two sets of experiments are performed on five datasets for the assessment of proposed work. The proposed solution is compared with three state-of-the-art methods based on Q3 accuracy, Q8 accuracy, and segment overlap score. Obtained results show that the proposed framework performs better in the majority of the cases than the past contributions. The proposed framework achieves Q8 accuracies of 82%, 80%, 79%, 73%, and 74% and Q3 accuracies of 90%, 90%, 92%, 79%, and 74% on CB6133, CB6133-filtered, CB513, CASP10, and CASP11 datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
鑫渊完成签到,获得积分10
3秒前
丘比特应助Dicy采纳,获得10
4秒前
乐乐应助vicky采纳,获得10
5秒前
5秒前
绿色催化完成签到,获得积分10
6秒前
福福发布了新的文献求助10
6秒前
坦率的匪应助谷德耐采纳,获得10
7秒前
7秒前
撸撸大仙发布了新的文献求助10
7秒前
7秒前
Nothing完成签到,获得积分10
8秒前
8秒前
9秒前
wtt发布了新的文献求助10
10秒前
10秒前
10秒前
旅行者发布了新的文献求助10
12秒前
wtt完成签到,获得积分10
15秒前
虚幻的采萱完成签到,获得积分20
16秒前
mailure发布了新的文献求助10
16秒前
科研通AI5应助zhouz采纳,获得10
17秒前
17秒前
700w完成签到 ,获得积分0
17秒前
18秒前
共享精神应助旅行者采纳,获得10
20秒前
香蕉觅云应助charles采纳,获得20
21秒前
福福完成签到,获得积分10
21秒前
天天快乐应助111采纳,获得10
21秒前
娟儿完成签到,获得积分10
24秒前
24秒前
25秒前
26秒前
淡然完成签到,获得积分20
26秒前
Owen应助Aria采纳,获得10
28秒前
tang完成签到,获得积分10
28秒前
萧水白应助liaomr采纳,获得10
29秒前
伶俐绿柏完成签到 ,获得积分10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152