Tunable and Dynamic Optofluidic Microlens Arrays Based on Droplets

微透镜 焦距 制作 光学 折射率 纳米技术 镜头(地质) 材料科学 光电子学 物理 医学 病理 替代医学
作者
Li Liang,Xuejia Hu,Yang Shi,Shukun Zhao,Qinghao Hu,Minhui Liang,Ye Ai
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (43): 14938-14946
标识
DOI:10.1021/acs.analchem.2c02437
摘要

Microlens arrays (MLAs) are acquiring a key role in the micro-optical system, which have been widely applied in the fields of imaging processing, light extraction, biochemical sensing, and display technology. Compared with solid MLAs, liquid MLAs have received extensive attention due to their natural smooth interface and adjustability. However, manufacturing tunable liquid MLAs with ideal structures is still a key challenge for current technologies. In this paper, a novel and simple optofluidic method is demonstrated, enabling the tunable focusing and high-quality imaging of liquid MLAs. Tunable droplets are fabricated and self-assembled into arrays as the MLAs, which can be easily adjusted to focus, form images, and display different focal lengths. Tuning of MLAs' focusing properties (range from 550 to 5370 μm) is demonstrated by changing the refractive index (RI) of the droplets with a fixed size of 200 μm, which can be changed by adjusting the flow rates of the two branch streams. Also, the corresponding numerical apertures of the MLAs range from 0.026 to 0.26. Furthermore, the MLAs' functionality for microparticle imaging applications is also illustrated. Combining the MLAs with a 4× objective, microparticle imaging is magnified two times, and the resolution has also been improved on the original basis. Besides, both the size and RI of the MLAs in an optofluidic chip can be further adjusted to detect samples at different positions. These MLAs have the merits of high optical performance, a simple fabrication procedure, easy integration, and good tunability. Thus, it shows promising opportunities for many applications, such as adaptive imaging and sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18922406869完成签到,获得积分20
1秒前
1秒前
才疏学浅发布了新的文献求助10
1秒前
starleo发布了新的文献求助10
2秒前
2秒前
开朗寇发布了新的文献求助10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
caitSith完成签到,获得积分10
5秒前
nnnnnn发布了新的文献求助10
6秒前
7秒前
白鲜香精发布了新的文献求助10
7秒前
忧伤的从阳关注了科研通微信公众号
7秒前
南初完成签到,获得积分10
9秒前
9秒前
满心欢喜发布了新的文献求助10
9秒前
忽忽发布了新的文献求助10
10秒前
可爱的函函应助杨建华采纳,获得20
10秒前
旅程发布了新的文献求助10
10秒前
桐桐应助才疏学浅采纳,获得10
11秒前
ZAO发布了新的文献求助10
13秒前
nnnnnn完成签到,获得积分10
13秒前
思源应助二二二采纳,获得10
15秒前
云隐完成签到,获得积分10
17秒前
白鲜香精完成签到,获得积分10
17秒前
稳重幻珊完成签到,获得积分20
18秒前
开朗寇完成签到,获得积分10
18秒前
科研通AI2S应助洪焕良采纳,获得10
19秒前
善学以致用应助陶醉觅夏采纳,获得10
21秒前
Hello应助梁大海采纳,获得10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244023
求助须知:如何正确求助?哪些是违规求助? 2887881
关于积分的说明 8250101
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625972