Semi-Supervised Dual Stream Segmentation Network for Fundus Lesion Segmentation

人工智能 计算机科学 分割 模式识别(心理学) 计算机视觉 图像分割 鉴别器 光学相干层析成像 编码器 眼底(子宫) 医学 电信 探测器 操作系统 眼科
作者
Dehui Xiang,Shenshen Yan,Ying Guan,Mulin Cai,Zheqing Li,Haiyun Liu,Xinjian Chen,Bei Tian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 713-725 被引量:5
标识
DOI:10.1109/tmi.2022.3215580
摘要

Accurate segmentation of retinal images can assist ophthalmologists to determine the degree of retinopathy and diagnose other systemic diseases. However, the structure of the retina is complex, and different anatomical structures often affect the segmentation of fundus lesions. In this paper, a new segmentation strategy called a dual stream segmentation network embedded into a conditional generative adversarial network is proposed to improve the accuracy of retinal lesion segmentation. First, a dual stream encoder is proposed to utilize the capabilities of two different networks and extract more feature information. Second, a multiple level fuse block is proposed to decode the richer and more effective features from the two different parallel encoders. Third, the proposed network is further trained in a semi-supervised adversarial manner to leverage from labeled images and unlabeled images with high confident pseudo labels, which are selected by the dual stream Bayesian segmentation network. An annotation discriminator is further proposed to reduce the negativity that prediction tends to become increasingly similar to the inaccurate predictions of unlabeled images. The proposed method is cross-validated in 384 clinical fundus fluorescein angiography images and 1040 optical coherence tomography images. Compared to state-of-the-art methods, the proposed method can achieve better segmentation of retinal capillary non-perfusion region and choroidal neovascularization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wujiwuhui发布了新的文献求助10
刚刚
kakaC发布了新的文献求助10
1秒前
蓦然回首发布了新的文献求助10
1秒前
judy完成签到 ,获得积分20
1秒前
xf完成签到,获得积分10
1秒前
2秒前
喵了个咪完成签到 ,获得积分10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
123发布了新的文献求助10
3秒前
小鱼完成签到,获得积分10
3秒前
4秒前
良辰应助YL采纳,获得10
4秒前
4秒前
ash完成签到,获得积分10
4秒前
haoooooooooooooo应助jym采纳,获得10
5秒前
无花果应助哈哈采纳,获得10
5秒前
赘婿应助二两微醺采纳,获得10
5秒前
6秒前
Lilla辣辣发布了新的文献求助10
6秒前
6秒前
FreeRice发布了新的文献求助10
8秒前
ash发布了新的文献求助20
8秒前
8秒前
香蕉觅云应助闾丘曼安采纳,获得30
8秒前
LuLan0401发布了新的文献求助10
8秒前
8秒前
9秒前
充电宝应助老迟到的可兰采纳,获得10
9秒前
天才幸运鱼完成签到,获得积分10
9秒前
寒冷的世界完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655