Transfer-Learning-Based Approach for Yield Prediction of Winter Wheat from Planet Data and SAFY Model

均方误差 稳健性(进化) 数据同化 产量(工程) 数学 学习迁移 计算机科学 统计 机器学习 气象学 生物 生物化学 物理 材料科学 基因 冶金
作者
Yu Zhao,Shaoyu Han,Meng Yang,Haikuan Feng,Zhenhai Li,Jingli Chen,Xiaoyu Song,Yan Zhu,Guijun Yang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 5474-5474 被引量:19
标识
DOI:10.3390/rs14215474
摘要

Crop production is one of the major interactions between humans and the natural environment, in the process, carbon is translocated cyclically inside the ecosystem. Data assimilation algorithm has advantages in mechanism and robustness in yield estimation, however, the computational efficiency is still a major obstacle for widespread application. To address the issue, a novel hybrid method based on the combination of the Crop Biomass Algorithm of Wheat (CBA-Wheat) to the Simple Algorithm For Yield (SAFY) model and the transfer learning method was proposed in this paper, which enables winter wheat yield estimation with acceptable accuracy and calculation efficiency. The transfer learning techniques learn the knowledge from the SAFY model and then use the knowledge to predict wheat yield. The main results showed that: (1) The comparison using CBA-Wheat between measured AGB and predicted AGB all reveal a good correlation with R2 of 0.83 and RMSE of 1.91 t ha−1, respectively; (2) The performance of yield prediction was as follows: transfer learning method (R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation (R2 of 0.64, RMSE of 1.01 t ha−1). At the farm scale, the two yield estimation models are still similar in performance with RMSE of 1.33 t ha−1 for data assimilation and 1.13 t ha−1 for transfer learning; (3) The time consumption of transfer learning with complete simulation data set is significantly lower than that of the other two yield estimation tests. The number of pixels to be simulated was about 16,000, and the computational efficiency of the data assimilation algorithm and transfer learning without complete simulation datasets. The transfer learning model shows great potential in improving the efficiency of production estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Dan完成签到,获得积分20
1秒前
Owen应助MingqingFang采纳,获得20
1秒前
2秒前
科目三应助健忘惜萱采纳,获得10
3秒前
6秒前
无花果应助一颗苹果采纳,获得10
6秒前
6秒前
结实的青荷完成签到,获得积分10
7秒前
尊敬惜儿发布了新的文献求助10
9秒前
10秒前
现代的慕青完成签到,获得积分10
11秒前
Owen应助科研通管家采纳,获得20
11秒前
小二郎应助科研通管家采纳,获得10
12秒前
清爽电脑应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
丘比特应助吃鱼的猫采纳,获得10
13秒前
13秒前
愉快太清完成签到,获得积分10
14秒前
丘比特应助无情的玉米采纳,获得10
15秒前
17秒前
18秒前
LIUJIAWEI完成签到,获得积分10
18秒前
每天都在找完成签到,获得积分10
19秒前
伶俐从筠发布了新的文献求助10
20秒前
大模型应助陶1122采纳,获得10
20秒前
22秒前
22秒前
23秒前
顾矜应助忆修采纳,获得10
23秒前
吃鱼的猫发布了新的文献求助10
24秒前
知行合一发布了新的文献求助150
25秒前
27秒前
Arizaq发布了新的文献求助10
28秒前
胡霖完成签到,获得积分10
30秒前
g3618发布了新的文献求助10
30秒前
奋斗忆南发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824