Transfer-Learning-Based Approach for Yield Prediction of Winter Wheat from Planet Data and SAFY Model

均方误差 稳健性(进化) 数据同化 产量(工程) 数学 学习迁移 计算机科学 统计 机器学习 气象学 生物 生物化学 基因 物理 冶金 材料科学
作者
Yu Zhao,Shaoyu Han,Meng Yang,Haikuan Feng,Zhenhai Li,Jingli Chen,Xiaoyu Song,Yan Zhu,Guijun Yang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 5474-5474 被引量:19
标识
DOI:10.3390/rs14215474
摘要

Crop production is one of the major interactions between humans and the natural environment, in the process, carbon is translocated cyclically inside the ecosystem. Data assimilation algorithm has advantages in mechanism and robustness in yield estimation, however, the computational efficiency is still a major obstacle for widespread application. To address the issue, a novel hybrid method based on the combination of the Crop Biomass Algorithm of Wheat (CBA-Wheat) to the Simple Algorithm For Yield (SAFY) model and the transfer learning method was proposed in this paper, which enables winter wheat yield estimation with acceptable accuracy and calculation efficiency. The transfer learning techniques learn the knowledge from the SAFY model and then use the knowledge to predict wheat yield. The main results showed that: (1) The comparison using CBA-Wheat between measured AGB and predicted AGB all reveal a good correlation with R2 of 0.83 and RMSE of 1.91 t ha−1, respectively; (2) The performance of yield prediction was as follows: transfer learning method (R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation (R2 of 0.64, RMSE of 1.01 t ha−1). At the farm scale, the two yield estimation models are still similar in performance with RMSE of 1.33 t ha−1 for data assimilation and 1.13 t ha−1 for transfer learning; (3) The time consumption of transfer learning with complete simulation data set is significantly lower than that of the other two yield estimation tests. The number of pixels to be simulated was about 16,000, and the computational efficiency of the data assimilation algorithm and transfer learning without complete simulation datasets. The transfer learning model shows great potential in improving the efficiency of production estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的秋柳完成签到,获得积分20
1秒前
kyou完成签到,获得积分10
1秒前
1秒前
TTXS发布了新的文献求助10
2秒前
缥缈纲发布了新的文献求助10
2秒前
Hannibal完成签到,获得积分10
2秒前
涵Allen发布了新的文献求助10
2秒前
打打应助尤涅若采纳,获得10
2秒前
杂化轨道退役研究员完成签到,获得积分10
2秒前
禛禛发布了新的文献求助10
2秒前
大个应助1113采纳,获得10
2秒前
桐桐应助camellia采纳,获得10
2秒前
5D完成签到,获得积分10
3秒前
3秒前
阿军完成签到,获得积分10
3秒前
在水一方应助yangxt-iga采纳,获得10
3秒前
叶子完成签到,获得积分10
4秒前
4秒前
萝卜干完成签到,获得积分10
5秒前
5秒前
Joie完成签到,获得积分10
5秒前
5秒前
6秒前
小羊发布了新的文献求助10
6秒前
6秒前
6秒前
Lucky发布了新的文献求助10
6秒前
7秒前
kyou发布了新的文献求助10
7秒前
7秒前
8秒前
波波波波波6764完成签到 ,获得积分10
8秒前
9秒前
9秒前
碧蓝安露完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
杨诗梦发布了新的文献求助10
9秒前
小王同志发布了新的文献求助20
9秒前
10秒前
Billion发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576530
求助须知:如何正确求助?哪些是违规求助? 3995739
关于积分的说明 12369777
捐赠科研通 3669687
什么是DOI,文献DOI怎么找? 2022376
邀请新用户注册赠送积分活动 1056390
科研通“疑难数据库(出版商)”最低求助积分说明 943637