Transfer-Learning-Based Approach for Yield Prediction of Winter Wheat from Planet Data and SAFY Model

均方误差 稳健性(进化) 数据同化 产量(工程) 数学 学习迁移 计算机科学 统计 机器学习 气象学 生物 生物化学 物理 材料科学 基因 冶金
作者
Yu Zhao,Shaoyu Han,Meng Yang,Haikuan Feng,Zhenhai Li,Jingli Chen,Xiaoyu Song,Yan Zhu,Guijun Yang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (21): 5474-5474 被引量:19
标识
DOI:10.3390/rs14215474
摘要

Crop production is one of the major interactions between humans and the natural environment, in the process, carbon is translocated cyclically inside the ecosystem. Data assimilation algorithm has advantages in mechanism and robustness in yield estimation, however, the computational efficiency is still a major obstacle for widespread application. To address the issue, a novel hybrid method based on the combination of the Crop Biomass Algorithm of Wheat (CBA-Wheat) to the Simple Algorithm For Yield (SAFY) model and the transfer learning method was proposed in this paper, which enables winter wheat yield estimation with acceptable accuracy and calculation efficiency. The transfer learning techniques learn the knowledge from the SAFY model and then use the knowledge to predict wheat yield. The main results showed that: (1) The comparison using CBA-Wheat between measured AGB and predicted AGB all reveal a good correlation with R2 of 0.83 and RMSE of 1.91 t ha−1, respectively; (2) The performance of yield prediction was as follows: transfer learning method (R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation (R2 of 0.64, RMSE of 1.01 t ha−1). At the farm scale, the two yield estimation models are still similar in performance with RMSE of 1.33 t ha−1 for data assimilation and 1.13 t ha−1 for transfer learning; (3) The time consumption of transfer learning with complete simulation data set is significantly lower than that of the other two yield estimation tests. The number of pixels to be simulated was about 16,000, and the computational efficiency of the data assimilation algorithm and transfer learning without complete simulation datasets. The transfer learning model shows great potential in improving the efficiency of production estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
ZZL发布了新的文献求助10
5秒前
枯夏发布了新的文献求助10
9秒前
9秒前
专注的小松鼠完成签到,获得积分10
10秒前
11秒前
李健的小迷弟应助ZZL采纳,获得10
12秒前
zdesfsfa发布了新的文献求助10
15秒前
无情的剑心完成签到,获得积分10
16秒前
19秒前
谭文完成签到 ,获得积分10
20秒前
22秒前
26秒前
29秒前
陈橙橙给陈橙橙的求助进行了留言
30秒前
31秒前
32秒前
刘大大发布了新的文献求助10
33秒前
Amy完成签到 ,获得积分10
34秒前
xuexue发布了新的文献求助10
34秒前
34秒前
QDU应助自由的中蓝采纳,获得10
34秒前
狗子发布了新的文献求助10
35秒前
模糊中正应助大俊采纳,获得30
35秒前
折光完成签到,获得积分10
37秒前
就这样完成签到 ,获得积分10
38秒前
40秒前
科目三应助36456657采纳,获得10
40秒前
甲乙丙丁发布了新的文献求助10
40秒前
43秒前
三少完成签到,获得积分20
43秒前
Mtoc完成签到 ,获得积分10
44秒前
Maisyuki完成签到,获得积分10
45秒前
45秒前
啦啦啦啦完成签到,获得积分10
47秒前
_呱_完成签到,获得积分10
49秒前
顾矜应助ab采纳,获得10
50秒前
yydssss发布了新的文献求助10
50秒前
tianliyan完成签到 ,获得积分10
51秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574