已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transfer-Learning-Based Approach for Yield Prediction of Winter Wheat from Planet Data and SAFY Model

均方误差 稳健性(进化) 数据同化 产量(工程) 数学 学习迁移 计算机科学 统计 机器学习 气象学 生物 生物化学 基因 物理 冶金 材料科学
作者
Yu Zhao,Shaoyu Han,Meng Yang,Haikuan Feng,Zhenhai Li,Jingli Chen,Xiaoyu Song,Yan Zhu,Guijun Yang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (21): 5474-5474 被引量:19
标识
DOI:10.3390/rs14215474
摘要

Crop production is one of the major interactions between humans and the natural environment, in the process, carbon is translocated cyclically inside the ecosystem. Data assimilation algorithm has advantages in mechanism and robustness in yield estimation, however, the computational efficiency is still a major obstacle for widespread application. To address the issue, a novel hybrid method based on the combination of the Crop Biomass Algorithm of Wheat (CBA-Wheat) to the Simple Algorithm For Yield (SAFY) model and the transfer learning method was proposed in this paper, which enables winter wheat yield estimation with acceptable accuracy and calculation efficiency. The transfer learning techniques learn the knowledge from the SAFY model and then use the knowledge to predict wheat yield. The main results showed that: (1) The comparison using CBA-Wheat between measured AGB and predicted AGB all reveal a good correlation with R2 of 0.83 and RMSE of 1.91 t ha−1, respectively; (2) The performance of yield prediction was as follows: transfer learning method (R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation (R2 of 0.64, RMSE of 1.01 t ha−1). At the farm scale, the two yield estimation models are still similar in performance with RMSE of 1.33 t ha−1 for data assimilation and 1.13 t ha−1 for transfer learning; (3) The time consumption of transfer learning with complete simulation data set is significantly lower than that of the other two yield estimation tests. The number of pixels to be simulated was about 16,000, and the computational efficiency of the data assimilation algorithm and transfer learning without complete simulation datasets. The transfer learning model shows great potential in improving the efficiency of production estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大布完成签到,获得积分10
1秒前
Oculus完成签到 ,获得积分10
2秒前
1q完成签到,获得积分10
5秒前
9秒前
852应助smida采纳,获得10
9秒前
lxl220完成签到 ,获得积分10
9秒前
向前葱发布了新的文献求助10
17秒前
26秒前
archiz发布了新的文献求助10
32秒前
33秒前
34秒前
吴博文完成签到,获得积分20
35秒前
36秒前
天开眼完成签到 ,获得积分10
37秒前
向前葱完成签到,获得积分10
40秒前
43秒前
吴博文发布了新的文献求助10
44秒前
咕噜咕噜圈圈完成签到,获得积分10
45秒前
52秒前
szx233完成签到 ,获得积分10
54秒前
脑洞疼应助科研通管家采纳,获得10
56秒前
天天快乐应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
浮游应助科研通管家采纳,获得10
56秒前
浮游应助科研通管家采纳,获得10
56秒前
57秒前
淡然玉米发布了新的文献求助10
58秒前
Legend_完成签到 ,获得积分10
59秒前
1分钟前
我是老大应助吴博文采纳,获得10
1分钟前
1分钟前
chongziccc完成签到 ,获得积分10
1分钟前
pp发布了新的文献求助10
1分钟前
动听不二完成签到,获得积分10
1分钟前
1分钟前
Charles完成签到,获得积分0
1分钟前
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
smida发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366475
求助须知:如何正确求助?哪些是违规求助? 4495121
关于积分的说明 13995390
捐赠科研通 4399432
什么是DOI,文献DOI怎么找? 2416683
邀请新用户注册赠送积分活动 1409448
关于科研通互助平台的介绍 1384563