Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification

计算机科学 学习迁移 人工智能 机器学习 杠杆(统计) 深度学习 公制(单位) 任务(项目管理) 编码器 一般化 元学习(计算机科学) 上下文图像分类 图像(数学) 数学分析 管理 经济 运营管理 操作系统 数学
作者
Hongyang Jiang,Mengdi Gao,Heng Li,Richu Jin,Hanpei Miao,Jiang Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 17-28 被引量:33
标识
DOI:10.1109/jbhi.2022.3215147
摘要

Few-shot learning (FSL) is promising in the field of medical image analysis due to high cost of establishing high-quality medical datasets. Many FSL approaches have been proposed in natural image scenes. However, present FSL methods are rarely evaluated on medical images and the FSL technology applicable to medical scenarios need to be further developed. Meta-learning has supplied an optional framework to address the challenging FSL setting. In this paper, we propose a novel multi-learner based FSL method for multiple medical image classification tasks, combining meta-learning with transfer-learning and metric-learning. Our designed model is composed of three learners, including auto-encoder, metric-learner and task-learner. In transfer-learning, all the learners are trained on the base classes. In the ensuing meta-learning, we leverage multiple novel tasks to fine-tune the metric-learner and task-learner in order to fast adapt to unseen tasks. Moreover, to further boost the learning efficiency of our model, we devised real-time data augmentation and dynamic Gaussian disturbance soft label (GDSL) scheme as effective generalization strategies of few-shot classification tasks. We have conducted experiments for three-class few-shot classification tasks on three newly-built challenging medical benchmarks, BLOOD, PATH and CHEST. Extensive comparisons to related works validated that our method achieved top performance both on homogeneous medical datasets and cross-domain datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明月完成签到 ,获得积分10
刚刚
刚刚
普萘洛尔完成签到,获得积分10
刚刚
刚刚
懒羊羊发布了新的文献求助10
刚刚
1秒前
荼白完成签到 ,获得积分10
1秒前
马艺帆发布了新的文献求助10
1秒前
xihuanni发布了新的文献求助10
2秒前
笑点低的衬衫完成签到,获得积分10
2秒前
失眠成危发布了新的文献求助10
2秒前
lsw发布了新的文献求助10
3秒前
Wsh完成签到,获得积分10
3秒前
ax发布了新的文献求助10
3秒前
CodeCraft应助zhuxi采纳,获得10
3秒前
今天也要开心Y完成签到,获得积分10
3秒前
yfy_fairy发布了新的文献求助10
4秒前
xxxx完成签到,获得积分10
4秒前
GgvnMuu完成签到,获得积分10
4秒前
4秒前
酷炫的夏云完成签到,获得积分20
5秒前
5秒前
sushx完成签到,获得积分10
6秒前
赘婿应助singxu采纳,获得10
6秒前
领导范儿应助kk采纳,获得10
6秒前
没有花活儿完成签到,获得积分10
6秒前
江浩完成签到,获得积分20
7秒前
Jasper应助马艺帆采纳,获得10
7秒前
7秒前
aaaaa发布了新的文献求助10
8秒前
zyx完成签到,获得积分20
8秒前
8秒前
秦善斓完成签到,获得积分10
8秒前
烤布蕾发布了新的文献求助10
8秒前
FY完成签到,获得积分10
9秒前
科目三应助Whiaper采纳,获得10
9秒前
pp发布了新的文献求助10
9秒前
xxxx发布了新的文献求助10
9秒前
pluto应助尘林采纳,获得10
9秒前
等你出现完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568749
求助须知:如何正确求助?哪些是违规求助? 4653462
关于积分的说明 14705509
捐赠科研通 4595160
什么是DOI,文献DOI怎么找? 2521570
邀请新用户注册赠送积分活动 1493069
关于科研通互助平台的介绍 1463812