Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification

计算机科学 学习迁移 人工智能 机器学习 杠杆(统计) 深度学习 公制(单位) 任务(项目管理) 编码器 一般化 元学习(计算机科学) 上下文图像分类 图像(数学) 数学分析 管理 经济 运营管理 操作系统 数学
作者
Hongyang Jiang,Mengdi Gao,Heng Li,Richu Jin,Hanpei Miao,Jiang Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 17-28 被引量:25
标识
DOI:10.1109/jbhi.2022.3215147
摘要

Few-shot learning (FSL) is promising in the field of medical image analysis due to high cost of establishing high-quality medical datasets. Many FSL approaches have been proposed in natural image scenes. However, present FSL methods are rarely evaluated on medical images and the FSL technology applicable to medical scenarios need to be further developed. Meta-learning has supplied an optional framework to address the challenging FSL setting. In this paper, we propose a novel multi-learner based FSL method for multiple medical image classification tasks, combining meta-learning with transfer-learning and metric-learning. Our designed model is composed of three learners, including auto-encoder, metric-learner and task-learner. In transfer-learning, all the learners are trained on the base classes. In the ensuing meta-learning, we leverage multiple novel tasks to fine-tune the metric-learner and task-learner in order to fast adapt to unseen tasks. Moreover, to further boost the learning efficiency of our model, we devised real-time data augmentation and dynamic Gaussian disturbance soft label (GDSL) scheme as effective generalization strategies of few-shot classification tasks. We have conducted experiments for three-class few-shot classification tasks on three newly-built challenging medical benchmarks, BLOOD, PATH and CHEST. Extensive comparisons to related works validated that our method achieved top performance both on homogeneous medical datasets and cross-domain datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xian发布了新的文献求助10
1秒前
舒心映易发布了新的文献求助10
1秒前
高大厉完成签到,获得积分10
2秒前
Akim应助雪无痕3074采纳,获得10
2秒前
2秒前
小方完成签到,获得积分10
3秒前
6秒前
J.发布了新的文献求助20
6秒前
寒冷河马发布了新的文献求助10
7秒前
风清扬应助玄月采纳,获得10
8秒前
轻松的惜芹应助kento采纳,获得50
9秒前
9秒前
汤瀚文完成签到 ,获得积分10
10秒前
yu完成签到,获得积分10
12秒前
毛毛发布了新的文献求助10
13秒前
zjq完成签到,获得积分10
15秒前
寒冷河马完成签到,获得积分10
18秒前
公冶笑白发布了新的文献求助10
19秒前
SSS完成签到,获得积分10
21秒前
wpx完成签到,获得积分10
22秒前
小乐完成签到,获得积分10
23秒前
24秒前
长江完成签到 ,获得积分10
24秒前
努力熊熊完成签到,获得积分10
26秒前
26秒前
27秒前
风清扬应助乌禅采纳,获得10
27秒前
科目三应助moonlight采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
yx_cheng应助科研通管家采纳,获得10
28秒前
ding应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
28秒前
loong发布了新的文献求助10
29秒前
Orange应助Xian采纳,获得10
29秒前
橙子完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176