Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification

计算机科学 学习迁移 人工智能 机器学习 杠杆(统计) 深度学习 公制(单位) 任务(项目管理) 编码器 一般化 元学习(计算机科学) 上下文图像分类 图像(数学) 数学分析 管理 经济 运营管理 操作系统 数学
作者
Hongyang Jiang,Mengdi Gao,Heng Li,Richu Jin,Hanpei Miao,Jiang Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 17-28 被引量:25
标识
DOI:10.1109/jbhi.2022.3215147
摘要

Few-shot learning (FSL) is promising in the field of medical image analysis due to high cost of establishing high-quality medical datasets. Many FSL approaches have been proposed in natural image scenes. However, present FSL methods are rarely evaluated on medical images and the FSL technology applicable to medical scenarios need to be further developed. Meta-learning has supplied an optional framework to address the challenging FSL setting. In this paper, we propose a novel multi-learner based FSL method for multiple medical image classification tasks, combining meta-learning with transfer-learning and metric-learning. Our designed model is composed of three learners, including auto-encoder, metric-learner and task-learner. In transfer-learning, all the learners are trained on the base classes. In the ensuing meta-learning, we leverage multiple novel tasks to fine-tune the metric-learner and task-learner in order to fast adapt to unseen tasks. Moreover, to further boost the learning efficiency of our model, we devised real-time data augmentation and dynamic Gaussian disturbance soft label (GDSL) scheme as effective generalization strategies of few-shot classification tasks. We have conducted experiments for three-class few-shot classification tasks on three newly-built challenging medical benchmarks, BLOOD, PATH and CHEST. Extensive comparisons to related works validated that our method achieved top performance both on homogeneous medical datasets and cross-domain datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luminous完成签到 ,获得积分10
刚刚
思源应助ohh采纳,获得10
刚刚
1秒前
Ava应助船长船长采纳,获得10
3秒前
酷酷访彤发布了新的文献求助10
4秒前
SciGPT应助凝聚态阿隅采纳,获得10
4秒前
4秒前
明理采珊发布了新的文献求助10
5秒前
周梦蝶发布了新的文献求助10
5秒前
xio发布了新的文献求助10
6秒前
每天我都睡得好完成签到 ,获得积分10
6秒前
6秒前
Lucas应助Aurora采纳,获得10
6秒前
7秒前
8秒前
徐安琪发布了新的文献求助10
9秒前
11秒前
大白完成签到,获得积分10
12秒前
Ning00000发布了新的文献求助10
12秒前
12秒前
蟹老板发布了新的文献求助10
13秒前
科目三应助酷酷访彤采纳,获得10
13秒前
666发布了新的文献求助10
13秒前
14秒前
15秒前
大白发布了新的文献求助10
16秒前
大模型应助飞飞飞采纳,获得10
17秒前
科研通AI5应助腼腆的又槐采纳,获得10
18秒前
18秒前
19秒前
小二郎应助徐安琪采纳,获得10
20秒前
21秒前
21秒前
21秒前
好有聊发布了新的文献求助10
22秒前
纳克萨发布了新的文献求助10
22秒前
Aurora发布了新的文献求助10
22秒前
爆米花应助贾败采纳,获得30
23秒前
Akim应助plplpl采纳,获得10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3685634
求助须知:如何正确求助?哪些是违规求助? 3236324
关于积分的说明 9825031
捐赠科研通 2948148
什么是DOI,文献DOI怎么找? 1616632
邀请新用户注册赠送积分活动 763773
科研通“疑难数据库(出版商)”最低求助积分说明 738016