肿瘤微环境
重编程
癌症研究
转录组
CD8型
膀胱癌
细胞
生物
免疫系统
化学
癌症
分子生物学
肿瘤细胞
基因
免疫学
遗传学
基因表达
作者
Lilong Liu,Yaxin Hou,Changqi Deng,Zhen Tao,Zhaohui Chen,Junyi Hu,Ke Chen
标识
DOI:10.1038/s41467-022-34495-z
摘要
Abstract Single-cell sequencing technologies have noteworthily improved our understanding of the genetic map and molecular characteristics of bladder cancer (BC). Here we identify CD39 as a potential therapeutic target for BC via single-cell transcriptome analysis. In a subcutaneous tumor model and orthotopic bladder cancer model, inhibition of CD39 (CD39i) by sodium polyoxotungstate is able to limit the growth of BC and improve the overall survival of tumor-bearing mice. Via single cell RNA sequencing, we find that CD39i increase the intratumor NK cells, conventional type 1 dendritic cells (cDC1) and CD8 + T cells and decrease the Treg abundance. The antitumor effect and reprogramming of the tumor microenvironment are blockaded in both the NK cells depletion model and the cDC1-deficient Batf3 −/− model. In addition, a significant synergistic effect is observed between CD39i and cisplatin, but the CD39i + anti-PD-L1 (or anti-PD1) strategy does not show any synergistic effects in the BC model. Our results confirm that CD39 is a potential target for the immune therapy of BC.
科研通智能强力驱动
Strongly Powered by AbleSci AI