Novel prognostic nomograms in cervical cancer based on analysis of 1075 patients

列线图 医学 肿瘤科 宫颈癌 内科学 癌症
作者
Qunxian Rao,Xue Han,Yuan Wei,Hui Zhou,Yajie Gong,Meimei Guan,Xiaoyan Feng,Huaiwu Lu,Qingsong Chen
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (5): 6092-6104 被引量:1
标识
DOI:10.1002/cam4.5335
摘要

Abstract Objective To explore the factors affecting the prognosis of cervical cancer (CC), and to construct and evaluate predictive nomograms to guide individualized clinical treatment. Methods The clinicopathological and follow‐up data of CC patients from June 2013 to December 2019 in Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University were retrospectively analyzed. Log‐rank test was used for univariate survival analysis, and Cox multivariate regression was used to identify independent prognostic factors, based on which nomogram models were established and evaluated in multiple aspects. Results Patients were randomly assigned into the training ( n = 746) and validation sets ( n = 329). Survival analysis of the training set identified cervical myometrial invasion, parametrial involvement, and malignant tumor history as prognosticators of postoperative DFS and pathological type, cervical myometrial invasion, and history of STD for OS. C‐index was 0.799 and 0.839 for the nomograms for DFS and OS, respectively. Calibration curves and Brier scores also indicated high performance. Importantly, decision curve analysis suggested great clinical applicability of these nomograms. Conclusions In this study, we analyzed a cohort of 1075 CC patients and identified DFS‐ or OS‐associated clinicohistologic characteristics. Two nomograms were subsequently constructed for DFS and OS prognostication, respectively, and showed high performance in terms of discrimination, calibration, and clinical applicability. These models may facilitate individualized treatment and patient selection for clinical trials. Future investigations with larger cohorts and prospective designs are warranted for validating these prognostic models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑之家完成签到,获得积分10
1秒前
弎夜完成签到,获得积分10
2秒前
2秒前
33应助季思锐采纳,获得10
3秒前
Hanoi347应助季思锐采纳,获得10
3秒前
4秒前
freyaaaaa应助zzymarvel采纳,获得30
4秒前
量子星尘发布了新的文献求助10
4秒前
大白完成签到 ,获得积分10
4秒前
万能图书馆应助虚心虾米采纳,获得10
5秒前
Wlin完成签到,获得积分10
6秒前
iris2333发布了新的文献求助10
7秒前
Owen应助笨笨醉薇采纳,获得10
7秒前
ky完成签到,获得积分10
8秒前
枕上诗书应助倒计时采纳,获得30
10秒前
科研通AI6应助LQ采纳,获得30
11秒前
能干砖家完成签到,获得积分10
11秒前
zyy完成签到,获得积分10
11秒前
YYY完成签到,获得积分10
11秒前
Peter完成签到 ,获得积分10
12秒前
Maestro_S应助科研通管家采纳,获得30
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
13秒前
ccm应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
14秒前
mmichaell应助科研通管家采纳,获得10
14秒前
14秒前
Maestro_S应助科研通管家采纳,获得10
14秒前
MMP应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
Maestro_S应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
布丁应助李雪采纳,获得50
14秒前
Maestro_S应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
旺通通应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419