Novel prognostic nomograms in cervical cancer based on analysis of 1075 patients

列线图 医学 肿瘤科 宫颈癌 内科学 癌症
作者
Qunxian Rao,Xue Han,Yuan Wei,Hui Zhou,Yajie Gong,Meimei Guan,Xiaoyan Feng,Huaiwu Lu,Qingsong Chen
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (5): 6092-6104 被引量:1
标识
DOI:10.1002/cam4.5335
摘要

Abstract Objective To explore the factors affecting the prognosis of cervical cancer (CC), and to construct and evaluate predictive nomograms to guide individualized clinical treatment. Methods The clinicopathological and follow‐up data of CC patients from June 2013 to December 2019 in Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University were retrospectively analyzed. Log‐rank test was used for univariate survival analysis, and Cox multivariate regression was used to identify independent prognostic factors, based on which nomogram models were established and evaluated in multiple aspects. Results Patients were randomly assigned into the training ( n = 746) and validation sets ( n = 329). Survival analysis of the training set identified cervical myometrial invasion, parametrial involvement, and malignant tumor history as prognosticators of postoperative DFS and pathological type, cervical myometrial invasion, and history of STD for OS. C‐index was 0.799 and 0.839 for the nomograms for DFS and OS, respectively. Calibration curves and Brier scores also indicated high performance. Importantly, decision curve analysis suggested great clinical applicability of these nomograms. Conclusions In this study, we analyzed a cohort of 1075 CC patients and identified DFS‐ or OS‐associated clinicohistologic characteristics. Two nomograms were subsequently constructed for DFS and OS prognostication, respectively, and showed high performance in terms of discrimination, calibration, and clinical applicability. These models may facilitate individualized treatment and patient selection for clinical trials. Future investigations with larger cohorts and prospective designs are warranted for validating these prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
licheng完成签到,获得积分10
1秒前
g7001完成签到,获得积分10
2秒前
long完成签到 ,获得积分10
3秒前
picapica668完成签到 ,获得积分10
4秒前
小黄不慌完成签到,获得积分10
5秒前
ohnono完成签到,获得积分10
6秒前
会思考的狐狸完成签到 ,获得积分10
6秒前
6秒前
steven完成签到 ,获得积分10
6秒前
元宝完成签到 ,获得积分10
8秒前
许大脚完成签到 ,获得积分10
10秒前
precious完成签到 ,获得积分10
10秒前
long发布了新的文献求助10
10秒前
YK完成签到,获得积分10
11秒前
无限老三发布了新的文献求助200
11秒前
拉宝了完成签到,获得积分10
11秒前
13秒前
寻桃阿玉发布了新的文献求助10
16秒前
Ganlou完成签到 ,获得积分20
16秒前
不配.应助专玩对抗路采纳,获得20
22秒前
朱湋帆完成签到 ,获得积分10
24秒前
许自通发布了新的文献求助10
25秒前
热情的雨南关注了科研通微信公众号
26秒前
平常的仙人掌完成签到,获得积分10
26秒前
销户完成签到 ,获得积分10
26秒前
哆啦顺利毕业完成签到 ,获得积分10
27秒前
混子king完成签到,获得积分10
28秒前
Ava应助科研通管家采纳,获得10
31秒前
王灿灿应助科研通管家采纳,获得10
31秒前
meizi0109完成签到 ,获得积分10
32秒前
漫栀完成签到 ,获得积分10
32秒前
研友_Z60x5L完成签到 ,获得积分10
33秒前
33秒前
吴晓娟完成签到 ,获得积分10
33秒前
lin完成签到,获得积分10
34秒前
Sandro完成签到,获得积分10
34秒前
海之声完成签到,获得积分10
34秒前
许自通完成签到,获得积分10
35秒前
pipi发布了新的文献求助10
36秒前
Nature完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146931
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826946
捐赠科研通 2454756
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565