Novel prognostic nomograms in cervical cancer based on analysis of 1075 patients

列线图 医学 肿瘤科 宫颈癌 内科学 癌症
作者
Qunxian Rao,Xue Han,Yuan Wei,Hui Zhou,Yajie Gong,Meimei Guan,Xiaoyan Feng,Huaiwu Lu,Qingsong Chen
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (5): 6092-6104 被引量:1
标识
DOI:10.1002/cam4.5335
摘要

Abstract Objective To explore the factors affecting the prognosis of cervical cancer (CC), and to construct and evaluate predictive nomograms to guide individualized clinical treatment. Methods The clinicopathological and follow‐up data of CC patients from June 2013 to December 2019 in Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University were retrospectively analyzed. Log‐rank test was used for univariate survival analysis, and Cox multivariate regression was used to identify independent prognostic factors, based on which nomogram models were established and evaluated in multiple aspects. Results Patients were randomly assigned into the training ( n = 746) and validation sets ( n = 329). Survival analysis of the training set identified cervical myometrial invasion, parametrial involvement, and malignant tumor history as prognosticators of postoperative DFS and pathological type, cervical myometrial invasion, and history of STD for OS. C‐index was 0.799 and 0.839 for the nomograms for DFS and OS, respectively. Calibration curves and Brier scores also indicated high performance. Importantly, decision curve analysis suggested great clinical applicability of these nomograms. Conclusions In this study, we analyzed a cohort of 1075 CC patients and identified DFS‐ or OS‐associated clinicohistologic characteristics. Two nomograms were subsequently constructed for DFS and OS prognostication, respectively, and showed high performance in terms of discrimination, calibration, and clinical applicability. These models may facilitate individualized treatment and patient selection for clinical trials. Future investigations with larger cohorts and prospective designs are warranted for validating these prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
纤指细轻捻完成签到 ,获得积分10
2秒前
胡萝卜须发布了新的文献求助10
3秒前
萧晓完成签到 ,获得积分10
3秒前
4秒前
4秒前
v地方完成签到,获得积分10
5秒前
ioio完成签到 ,获得积分10
5秒前
6秒前
思源应助青菜虫子采纳,获得10
6秒前
Connie发布了新的文献求助10
7秒前
9秒前
FashionBoy应助HTT采纳,获得10
10秒前
Alice完成签到 ,获得积分10
12秒前
刻苦的冬易完成签到,获得积分10
17秒前
17秒前
1111发布了新的文献求助10
19秒前
顾矜应助北北采纳,获得20
19秒前
牛马小刘完成签到 ,获得积分10
21秒前
21秒前
哭泣的若翠完成签到,获得积分10
22秒前
cz完成签到 ,获得积分10
25秒前
26秒前
自由蓉发布了新的文献求助10
26秒前
朱晨旭发布了新的文献求助10
26秒前
Youzi完成签到,获得积分10
27秒前
所所应助科研顺利123采纳,获得10
27秒前
冷笑完成签到,获得积分10
28秒前
梅雨季来信完成签到,获得积分10
29秒前
Jenny完成签到,获得积分10
30秒前
32秒前
zhuxl完成签到,获得积分10
33秒前
laterpan完成签到,获得积分10
33秒前
香蕉觅云应助1111采纳,获得10
34秒前
34秒前
我家的二妮完成签到,获得积分10
35秒前
35秒前
znlion完成签到,获得积分10
40秒前
purejun发布了新的文献求助10
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306080
求助须知:如何正确求助?哪些是违规求助? 4451949
关于积分的说明 13853470
捐赠科研通 4339452
什么是DOI,文献DOI怎么找? 2382593
邀请新用户注册赠送积分活动 1377537
关于科研通互助平台的介绍 1345169