Novel prognostic nomograms in cervical cancer based on analysis of 1075 patients

列线图 医学 肿瘤科 宫颈癌 内科学 癌症
作者
Qunxian Rao,Xue Han,Yuan Wei,Hui Zhou,Yajie Gong,Meimei Guan,Xiaoyan Feng,Huaiwu Lu,Qingsong Chen
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (5): 6092-6104 被引量:1
标识
DOI:10.1002/cam4.5335
摘要

Abstract Objective To explore the factors affecting the prognosis of cervical cancer (CC), and to construct and evaluate predictive nomograms to guide individualized clinical treatment. Methods The clinicopathological and follow‐up data of CC patients from June 2013 to December 2019 in Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University were retrospectively analyzed. Log‐rank test was used for univariate survival analysis, and Cox multivariate regression was used to identify independent prognostic factors, based on which nomogram models were established and evaluated in multiple aspects. Results Patients were randomly assigned into the training ( n = 746) and validation sets ( n = 329). Survival analysis of the training set identified cervical myometrial invasion, parametrial involvement, and malignant tumor history as prognosticators of postoperative DFS and pathological type, cervical myometrial invasion, and history of STD for OS. C‐index was 0.799 and 0.839 for the nomograms for DFS and OS, respectively. Calibration curves and Brier scores also indicated high performance. Importantly, decision curve analysis suggested great clinical applicability of these nomograms. Conclusions In this study, we analyzed a cohort of 1075 CC patients and identified DFS‐ or OS‐associated clinicohistologic characteristics. Two nomograms were subsequently constructed for DFS and OS prognostication, respectively, and showed high performance in terms of discrimination, calibration, and clinical applicability. These models may facilitate individualized treatment and patient selection for clinical trials. Future investigations with larger cohorts and prospective designs are warranted for validating these prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南巷发布了新的文献求助10
1秒前
3秒前
爆米花应助zhanglin采纳,获得10
5秒前
科研天才完成签到,获得积分10
6秒前
SHASHA关注了科研通微信公众号
6秒前
8秒前
8秒前
在水一方应助安谢采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
JamesPei应助麦片采纳,获得10
10秒前
北极星完成签到,获得积分10
10秒前
传奇3应助猪猪hero采纳,获得10
11秒前
qqq发布了新的文献求助10
11秒前
在水一方应助0534335采纳,获得10
11秒前
12秒前
13秒前
Conccuc发布了新的文献求助10
13秒前
15秒前
ADJ完成签到,获得积分10
15秒前
yyy发布了新的文献求助10
15秒前
16秒前
鲤鱼笑南完成签到,获得积分10
17秒前
谦让的博完成签到,获得积分10
18秒前
18秒前
白粥发布了新的文献求助10
19秒前
20秒前
20秒前
李健应助猪猪hero采纳,获得10
20秒前
21秒前
Ava应助小羊采纳,获得10
21秒前
21秒前
22秒前
孙智远发布了新的文献求助10
22秒前
22秒前
高大的映波关注了科研通微信公众号
22秒前
23秒前
23秒前
鱼可完成签到 ,获得积分10
23秒前
大强发布了新的文献求助10
24秒前
jackguihx完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483