Novel prognostic nomograms in cervical cancer based on analysis of 1075 patients

列线图 医学 肿瘤科 宫颈癌 内科学 癌症
作者
Qunxian Rao,Xue Han,Yuan Wei,Hui Zhou,Yajie Gong,Meimei Guan,Xiaoyan Feng,Huaiwu Lu,Qingsong Chen
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (5): 6092-6104 被引量:1
标识
DOI:10.1002/cam4.5335
摘要

Abstract Objective To explore the factors affecting the prognosis of cervical cancer (CC), and to construct and evaluate predictive nomograms to guide individualized clinical treatment. Methods The clinicopathological and follow‐up data of CC patients from June 2013 to December 2019 in Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University were retrospectively analyzed. Log‐rank test was used for univariate survival analysis, and Cox multivariate regression was used to identify independent prognostic factors, based on which nomogram models were established and evaluated in multiple aspects. Results Patients were randomly assigned into the training ( n = 746) and validation sets ( n = 329). Survival analysis of the training set identified cervical myometrial invasion, parametrial involvement, and malignant tumor history as prognosticators of postoperative DFS and pathological type, cervical myometrial invasion, and history of STD for OS. C‐index was 0.799 and 0.839 for the nomograms for DFS and OS, respectively. Calibration curves and Brier scores also indicated high performance. Importantly, decision curve analysis suggested great clinical applicability of these nomograms. Conclusions In this study, we analyzed a cohort of 1075 CC patients and identified DFS‐ or OS‐associated clinicohistologic characteristics. Two nomograms were subsequently constructed for DFS and OS prognostication, respectively, and showed high performance in terms of discrimination, calibration, and clinical applicability. These models may facilitate individualized treatment and patient selection for clinical trials. Future investigations with larger cohorts and prospective designs are warranted for validating these prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气萤完成签到,获得积分20
1秒前
1秒前
我ppp完成签到 ,获得积分10
1秒前
2秒前
易燃物品完成签到,获得积分10
2秒前
Hello应助Ther采纳,获得10
4秒前
CherylZhao完成签到,获得积分10
5秒前
Galato发布了新的文献求助10
6秒前
颜愫完成签到,获得积分10
6秒前
安详向日葵完成签到 ,获得积分10
7秒前
拼搏的白云完成签到,获得积分10
7秒前
852应助hhh采纳,获得10
7秒前
李白白白完成签到,获得积分10
7秒前
王手完成签到,获得积分10
7秒前
8秒前
一人完成签到,获得积分10
9秒前
do0完成签到,获得积分10
10秒前
yar应助xlz110采纳,获得10
10秒前
NexusExplorer应助落寞凌波采纳,获得10
12秒前
量子星尘发布了新的文献求助10
15秒前
123完成签到 ,获得积分10
15秒前
哈哈呵完成签到,获得积分10
15秒前
15秒前
Rylee完成签到,获得积分10
15秒前
Jiro完成签到,获得积分10
17秒前
我ppp发布了新的文献求助60
18秒前
19秒前
纳米酶催化完成签到,获得积分10
20秒前
20秒前
John完成签到,获得积分10
20秒前
李小强完成签到,获得积分10
21秒前
22秒前
25秒前
落寞凌波发布了新的文献求助10
25秒前
25秒前
26秒前
健壮的尔烟完成签到,获得积分10
26秒前
三三完成签到 ,获得积分10
26秒前
白betty完成签到,获得积分10
28秒前
双儿发布了新的文献求助10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029