Development of a multimodal machine-learning fusion model to non-invasively assess ileal Crohn’s disease endoscopic activity

接收机工作特性 克罗恩病 人工智能 磁共振成像 威尔科克森符号秩检验 医学 机器学习 逻辑回归 相关性 均方误差 疾病 计算机科学 数学 内科学 统计 放射科 曼惠特尼U检验 几何学
作者
Itai Guez,Gili Focht,Mary‐Louise C. Greer,Ruth Cytter-Kuint,Li‐tal Pratt,Denise Castro,Dan Turner,Anne M. Griffiths,Moti Freiman
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:227: 107207-107207 被引量:13
标识
DOI:10.1016/j.cmpb.2022.107207
摘要

Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers.We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions' mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics.121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9).Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小乐应助林白同学采纳,获得10
1秒前
Dr_Zhao完成签到,获得积分20
1秒前
Haley完成签到 ,获得积分0
2秒前
半糖完成签到 ,获得积分10
2秒前
2秒前
2秒前
大模型应助Hommand_藏山采纳,获得10
2秒前
ll完成签到 ,获得积分10
2秒前
3秒前
Aurora.H完成签到,获得积分10
3秒前
cherry发布了新的文献求助10
3秒前
3秒前
小西发布了新的文献求助30
4秒前
4秒前
7秒前
1111发布了新的文献求助30
7秒前
8秒前
万能图书馆应助苏小喵采纳,获得10
8秒前
lu发布了新的文献求助10
8秒前
科研通AI5应助ylq采纳,获得10
8秒前
泡泡茶壶o完成签到 ,获得积分10
10秒前
11秒前
12秒前
13秒前
13秒前
朴实的映秋完成签到,获得积分10
14秒前
笑点低的以亦完成签到,获得积分10
14秒前
在水一方应助秀丽菠萝采纳,获得10
15秒前
wanwan应助三文鱼采纳,获得10
15秒前
想退休了完成签到 ,获得积分10
16秒前
16秒前
英姑应助Atlantic采纳,获得10
16秒前
善学以致用应助lu采纳,获得10
16秒前
椿人发布了新的文献求助10
16秒前
ren发布了新的文献求助10
17秒前
dzhang198777关注了科研通微信公众号
17秒前
Cassiopiea19发布了新的文献求助50
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439