An Interactive Viewer to Improve Operational Aftershock Forecasts

余震 震级(天文学) 序列(生物学) 表(数据库) 绘图(图形) 地质学 计算机科学 气象学 地震学 数据挖掘 统计 地理 数学 天文 物理 生物 遗传学
作者
Gabrielle M. Paris,Andrew J. Michael
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:94 (1): 473-484 被引量:2
标识
DOI:10.1785/0220220108
摘要

Abstract The U.S. Geological Survey (USGS) issues forecasts for aftershocks about 20 minutes after most earthquakes above M 5 in the United States and its territories, and updates these forecasts 75 times during the first year. Most of the forecasts are issued automatically, but some forecasts require manual intervention to maintain accuracy. It is important to identify the sequences whose forecasts will benefit from a modified approach so the USGS can provide accurate information to the public. The oaftools R package (Paris and Michael, 2022) includes functions that analyze and plot earthquake sequences and their forecasts to identify which sequences require such intervention. The package includes the Operational Aftershock Forecast (OAF) Viewer, which incorporates the functions into an interactive web environment that can be used to explore aftershock sequences. The OAF Viewer starts with a global map and table of mainshocks. After a mainshock has been selected, the map and a new table show its aftershocks and the OAF Viewer generates five analytical plots: (1) magnitude–time, which is used to look for patterns in the data; (2) cumulative number, to see how the productivity of the sequence compares to a Reasenberg and Jones (1989) aftershock model over time; (3) magnitude–frequency, to compare the ratio of large to small magnitudes and extrapolate to higher magnitudes with sparse data and lower magnitudes with incomplete data; (4) forecast success, to compare the forecasts with observations for a sequence; and (5) parameter–time, which examines the temporal evolution of the forecast model parameters. The user can interact with the functions provided by the oaftools package through the OAF Viewer or by incorporating the functions into their own analysis methods. The OAF Viewer will help seismologists understand complexities in the data, communicate with the public and emergency managers, and improve the OAF system by maintaining operational awareness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的可冥完成签到,获得积分10
1秒前
1秒前
2秒前
silong发布了新的文献求助10
2秒前
HITvagary完成签到,获得积分10
2秒前
华仔应助欣喜访旋采纳,获得10
2秒前
2秒前
3秒前
良辰应助科研cc采纳,获得10
3秒前
NN应助西门晴采纳,获得10
3秒前
瘦瘦白昼发布了新的文献求助10
3秒前
1111应助科研小民工采纳,获得20
4秒前
逸风望完成签到,获得积分10
4秒前
4秒前
5秒前
慕青应助开朗的慕儿采纳,获得10
5秒前
5秒前
YAOYAO完成签到,获得积分0
5秒前
紫色系完成签到,获得积分10
5秒前
黄豆芽发布了新的文献求助10
6秒前
6秒前
Jin完成签到,获得积分10
7秒前
Akim应助外向如冬采纳,获得10
8秒前
8秒前
8秒前
浩浩大人完成签到,获得积分20
10秒前
10秒前
狂野的雅绿完成签到 ,获得积分10
10秒前
WMT完成签到 ,获得积分10
10秒前
正在输入中完成签到,获得积分10
10秒前
Lucas应助小小学术人采纳,获得10
11秒前
阳光刺眼完成签到 ,获得积分10
11秒前
Akim应助Promise采纳,获得10
11秒前
斯文败类应助小汪采纳,获得10
11秒前
11秒前
小宇发布了新的文献求助10
12秒前
12秒前
Tira完成签到,获得积分10
12秒前
SciGPT应助23采纳,获得10
12秒前
科研cc完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672