A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:403: 115671-115671 被引量:382
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
tianjiu发布了新的文献求助10
2秒前
xh1255发布了新的文献求助10
2秒前
林狗发布了新的文献求助10
2秒前
2秒前
3秒前
CipherSage应助大胆的太英采纳,获得10
3秒前
4秒前
4秒前
4秒前
坦率含双发布了新的文献求助10
4秒前
Li应助Ye采纳,获得10
5秒前
3333发布了新的文献求助10
5秒前
5秒前
chekd发布了新的文献求助10
6秒前
wuhuhu完成签到,获得积分10
6秒前
娜娜发布了新的文献求助10
8秒前
CodeCraft应助乐兰正雪采纳,获得10
8秒前
xh1255完成签到,获得积分10
9秒前
9秒前
老实的友桃完成签到 ,获得积分10
9秒前
10秒前
出其东门发布了新的文献求助10
10秒前
Takahara2000应助anqin540540采纳,获得10
11秒前
所所应助拉长的傲菡采纳,获得10
11秒前
科研通AI2S应助夭夭采纳,获得10
12秒前
善学以致用应助lujiajia采纳,获得10
13秒前
15秒前
16秒前
CodeCraft应助COSMOS采纳,获得10
16秒前
FightPeng发布了新的文献求助10
16秒前
赘婿应助欣慰元蝶采纳,获得10
18秒前
19秒前
Invictus发布了新的文献求助10
20秒前
ysan发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159073
求助须知:如何正确求助?哪些是违规求助? 4353650
关于积分的说明 13556277
捐赠科研通 4197287
什么是DOI,文献DOI怎么找? 2301960
邀请新用户注册赠送积分活动 1301944
关于科研通互助平台的介绍 1247095