A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:403: 115671-115671 被引量:382
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宋玮完成签到,获得积分10
刚刚
刚刚
刚刚
浮山完成签到 ,获得积分10
1秒前
yulin发布了新的文献求助10
1秒前
1秒前
2秒前
小蘑菇应助迷人迎曼采纳,获得10
2秒前
北风北风发布了新的文献求助10
2秒前
2秒前
李健的粉丝团团长应助aaa采纳,获得10
2秒前
LiZhao完成签到,获得积分10
2秒前
倪好完成签到,获得积分10
2秒前
3秒前
haku发布了新的文献求助10
3秒前
3秒前
AYGI完成签到,获得积分10
3秒前
赘婿应助叶95采纳,获得10
4秒前
4秒前
狄百招完成签到,获得积分10
4秒前
4秒前
小小完成签到 ,获得积分10
5秒前
xuying158发布了新的文献求助10
5秒前
池鱼完成签到,获得积分10
6秒前
斗罗大陆发布了新的文献求助10
6秒前
6秒前
9391发布了新的文献求助10
7秒前
7秒前
黑马王子发布了新的文献求助10
7秒前
黑脸大汉完成签到,获得积分10
7秒前
JINtian完成签到,获得积分10
8秒前
丘比特应助夏夏采纳,获得10
8秒前
香蕉觅云应助威武的绿兰采纳,获得10
8秒前
无语完成签到,获得积分10
8秒前
wanci应助抗氧剂采纳,获得10
8秒前
8秒前
8秒前
RUIRUI发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049