A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:403: 115671-115671 被引量:382
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Hui_2023采纳,获得10
2秒前
hangboy发布了新的文献求助30
5秒前
6秒前
研友_ZGAeoL完成签到,获得积分10
6秒前
hhy完成签到,获得积分10
6秒前
7秒前
8秒前
唐唐发布了新的文献求助10
10秒前
test_20251231关注了科研通微信公众号
10秒前
Master完成签到,获得积分10
11秒前
善学以致用应助鲜艳的芹采纳,获得10
12秒前
overlood完成签到 ,获得积分10
12秒前
12秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
13秒前
秦淮发布了新的文献求助10
13秒前
Jodie发布了新的文献求助10
14秒前
陶醉大侠完成签到,获得积分10
16秒前
HRXYZ完成签到,获得积分10
16秒前
梁jj完成签到,获得积分10
18秒前
sylvia完成签到,获得积分10
18秒前
小遇完成签到 ,获得积分10
19秒前
21秒前
24秒前
小言发布了新的文献求助10
25秒前
liu发布了新的文献求助30
27秒前
victor完成签到,获得积分10
28秒前
28秒前
Zx_1993应助hangboy采纳,获得30
29秒前
sqqq完成签到 ,获得积分10
30秒前
2953685951完成签到,获得积分10
31秒前
会飞的猪完成签到,获得积分10
32秒前
讨厌鬼完成签到,获得积分10
35秒前
夏未央完成签到,获得积分10
35秒前
小言完成签到,获得积分20
38秒前
MetaMysteria完成签到,获得积分10
40秒前
test_20251231发布了新的文献求助50
42秒前
科研通AI2S应助123456采纳,获得10
42秒前
42秒前
胡蝶完成签到 ,获得积分10
44秒前
无情的井完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866