A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:403: 115671-115671 被引量:382
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UIKI发布了新的文献求助10
刚刚
研友_VZG7GZ应助大钱采纳,获得10
1秒前
WJM完成签到,获得积分10
1秒前
keyakey发布了新的文献求助10
1秒前
上官若男应助zy采纳,获得10
1秒前
2秒前
自由小土豆完成签到,获得积分10
2秒前
食草味完成签到,获得积分20
3秒前
丘比特应助尊敬的小凡采纳,获得30
3秒前
阿彪发布了新的文献求助10
3秒前
3秒前
huangsile发布了新的文献求助10
4秒前
王桃矢完成签到,获得积分10
4秒前
4秒前
zz发布了新的文献求助10
5秒前
5秒前
5秒前
甜甜玫瑰发布了新的文献求助10
6秒前
zxl发布了新的文献求助10
7秒前
星辰大海应助山野采纳,获得10
7秒前
五五五完成签到,获得积分10
8秒前
道阻且长发布了新的文献求助10
8秒前
8秒前
大个应助热心树叶采纳,获得10
8秒前
8秒前
9秒前
10秒前
思源应助doudou采纳,获得10
10秒前
拾陆完成签到,获得积分20
10秒前
皮皮琪完成签到,获得积分10
10秒前
11秒前
阿玺发布了新的文献求助10
11秒前
稳重迎梦完成签到 ,获得积分10
11秒前
勤恳醉柳发布了新的文献求助10
11秒前
无花果应助zz采纳,获得10
11秒前
11秒前
谭飞扬完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508259
求助须知:如何正确求助?哪些是违规求助? 4603561
关于积分的说明 14486351
捐赠科研通 4537753
什么是DOI,文献DOI怎么找? 2486753
邀请新用户注册赠送积分活动 1469227
关于科研通互助平台的介绍 1441618