A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:403: 115671-115671 被引量:292
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DavidXie发布了新的文献求助10
1秒前
1秒前
小懒猪完成签到,获得积分10
1秒前
消消消消气完成签到 ,获得积分10
2秒前
宋高超完成签到,获得积分10
2秒前
Archy发布了新的文献求助10
4秒前
爆米花应助hyw010724采纳,获得10
5秒前
5秒前
6秒前
廖嘻嘻发布了新的文献求助30
6秒前
ylq发布了新的文献求助10
6秒前
kelvin发布了新的文献求助10
6秒前
7秒前
9秒前
9秒前
wang发布了新的文献求助10
9秒前
有足量NaCl发布了新的文献求助10
10秒前
淳于三问完成签到,获得积分10
10秒前
小镇牛马发布了新的文献求助10
10秒前
可爱的函函应助大曼采纳,获得10
11秒前
霜序完成签到,获得积分10
12秒前
12秒前
14秒前
lucky李完成签到,获得积分20
14秒前
豆豆发布了新的文献求助10
15秒前
我不吃葱发布了新的文献求助10
15秒前
15秒前
Owen应助Michael_li采纳,获得10
15秒前
weiweiwu12完成签到,获得积分10
16秒前
麦子发布了新的文献求助10
16秒前
16秒前
18秒前
大模型应助王老吉采纳,获得10
18秒前
19秒前
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
k7应助科研通管家采纳,获得10
20秒前
SHAO应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609