A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:403: 115671-115671 被引量:382
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶y发布了新的文献求助10
3秒前
悟空完成签到 ,获得积分10
8秒前
曾经小伙完成签到 ,获得积分10
9秒前
无花果应助xiu采纳,获得10
14秒前
wuyyuan完成签到 ,获得积分10
18秒前
大脸猫完成签到 ,获得积分10
21秒前
专注的觅云完成签到 ,获得积分10
21秒前
温暖完成签到 ,获得积分10
25秒前
25秒前
26秒前
xiu完成签到,获得积分10
26秒前
吴静完成签到 ,获得积分10
29秒前
momo完成签到,获得积分10
29秒前
xiu发布了新的文献求助10
29秒前
ng完成签到 ,获得积分10
30秒前
linjunqi完成签到,获得积分10
31秒前
马昕钰完成签到 ,获得积分10
31秒前
momo发布了新的文献求助10
32秒前
yudoyaer发布了新的文献求助30
34秒前
harden9159完成签到,获得积分10
36秒前
宁静致远完成签到,获得积分10
39秒前
wang完成签到,获得积分10
40秒前
40秒前
风趣惜文完成签到 ,获得积分10
44秒前
xiongguoguo完成签到,获得积分20
45秒前
45秒前
王佳亮完成签到,获得积分10
49秒前
sysi完成签到 ,获得积分10
50秒前
53秒前
康康完成签到 ,获得积分10
53秒前
56秒前
yehuaiyu完成签到,获得积分10
57秒前
哥哥发布了新的文献求助10
59秒前
yss发布了新的文献求助10
1分钟前
研友_8K2QJZ完成签到,获得积分10
1分钟前
风情阿荣完成签到 ,获得积分10
1分钟前
1分钟前
彭于晏应助yss采纳,获得10
1分钟前
ycd完成签到,获得积分10
1分钟前
liu砖家完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325418
求助须知:如何正确求助?哪些是违规求助? 4465883
关于积分的说明 13895000
捐赠科研通 4358174
什么是DOI,文献DOI怎么找? 2393938
邀请新用户注册赠送积分活动 1387356
关于科研通互助平台的介绍 1358111