Transcriptional Patterns of Brain Structural Covariance Network Abnormalities Associated With Suicidal Thoughts and Behaviors in Major Depressive Disorder

心理学 重性抑郁障碍 协方差 临床心理学 神经科学 精神科 认知 统计 数学
作者
Kun Qin,Huiru Li,Huawei Zhang,Li Yin,Baolin Wu,Nanfang Pan,Ching‐Po Lin,Neil P. Roberts,John A. Sweeney,Xiaoqi Huang,Qiyong Gong,Zhiyun Jia
出处
期刊:Biological Psychiatry [Elsevier BV]
卷期号:96 (6): 435-444 被引量:16
标识
DOI:10.1016/j.biopsych.2024.01.026
摘要

Abstract

Background

Although brain structural covariance network (SCN) abnormalities were associated with suicidal thoughts and behaviors (STB) in individuals with major depressive disorder (MDD), previous studies reported inconsistent findings based on small sample size and underlying transcriptional patterns remained poorly understood.

Methods

Using a multicenter MRI dataset including 218 MDD patients with STB (MDD-STB), 230 MDD patients without STB (MDD-nSTB) and 263 healthy controls (HC), we established individualized SCN based on regional morphometric measures and assessed network topological metrics using graph theoretical analysis. Machine learning methods were applied to explore and compare the diagnostic value of morphometric and topological features in identifying MDD and STB at the individual level. Brain-wide relationship between STB-related connectomic alterations and gene expression were examined using partial least square regression.

Results

Group comparisons revealed that SCN topological deficits associated with STB were identified in the prefrontal, anterior cingulate, and lateral temporal cortices. Combining morphometric and topological features allowed for individual-level characterization of MDD and STB. Topological features exhibited greater contribution to distinguishing between patients with and without STB. STB-related connectomic alterations were spatially correlated with the expression of genes enriched for cellular metabolism and synaptic signaling.

Conclusions

These findings revealed robust brain structural deficits at network level, highlight the importance of SCN topological measures in characterizing individual suicidality, and demonstrate its linkage to molecular function and cell types, providing novel insights into the neurobiological underpinnings and potential markers for prediction and prevention of suicide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
储婉怡完成签到,获得积分20
刚刚
幽默从安发布了新的文献求助10
1秒前
帝蒼完成签到,获得积分10
2秒前
高路发布了新的文献求助10
2秒前
wei发布了新的文献求助10
4秒前
Fqdgest完成签到,获得积分10
5秒前
6秒前
叮叮车完成签到,获得积分10
6秒前
完美世界应助明杰采纳,获得10
6秒前
善学以致用应助牛牛眉目采纳,获得10
8秒前
希望天下0贩的0应助Cynicism采纳,获得10
8秒前
9秒前
J33发布了新的文献求助10
11秒前
xr发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
张航发布了新的文献求助10
15秒前
Lucas应助科研鸟采纳,获得10
15秒前
可爱的函函应助叮叮车采纳,获得10
15秒前
15秒前
15秒前
17秒前
17秒前
18秒前
18秒前
优雅的化蛹完成签到,获得积分10
19秒前
19秒前
Whisper发布了新的文献求助10
20秒前
fanli发布了新的文献求助10
20秒前
20秒前
健忘飞风完成签到,获得积分10
23秒前
Cynicism发布了新的文献求助10
24秒前
明杰完成签到,获得积分10
24秒前
Aries完成签到 ,获得积分10
24秒前
houcheng发布了新的文献求助10
24秒前
24秒前
张航完成签到,获得积分10
28秒前
干饭大王应助2023204306324采纳,获得10
28秒前
J33完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388