Spatiotemporal evolutionary characteristics and driving forces of carbon emissions in three Chinese urban agglomerations

城市群 温室气体 经济地理学 环境科学 运输工程 地理 业务 工程类 生态学 生物
作者
Meng Wei,Zhi Cai,Yan Song,Jiangang Xu,Muqiu Lu
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:104: 105320-105320 被引量:19
标识
DOI:10.1016/j.scs.2024.105320
摘要

Assessing carbon emissions in urban agglomerations has emerged as a pivotal step towards achieving carbon neutrality. In this study, panel data from 75 cities within the three largest urban agglomerations in China—the Yangtze River Delta (YRD), Beijing-Tianjin-Hebei (BTH) region, and Pearl River Delta (PRD)—were constructed to analyse the spatiotemporal evolution of carbon emissions from 2005 to 2020. An indicator system was established, and the Spatial Durbin Model (SDM) was used to investigate the driving forces of carbon emissions. The findings revealed a gradual increase in carbon emissions within these agglomerations, with a notable shift in their spatial distribution from metropolitan areas to broader urban agglomerations, exhibiting significant spatial correlation. Additionally, variations in carbon emissions were observed across different development stages. The SDM indicated that several factors, such as economic conditions, industrialization levels, and population size, influenced the carbon emissions of urban agglomerations. Nevertheless, the impact of these driving factors on carbon emissions was not constant and could be altered by other elements, including green technologies and governmental policies, indicating a decoupling effect between economic growth and carbon emissions. The insights from this study can assist policymakers in formulating strategies to curb carbon emissions and foster sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
water应助小米采纳,获得10
刚刚
刚刚
共享精神应助pick采纳,获得10
1秒前
希望天下0贩的0应助白茶采纳,获得10
1秒前
菲常大机智完成签到 ,获得积分10
1秒前
转身叶海发布了新的文献求助10
2秒前
2秒前
材料打工人完成签到 ,获得积分10
2秒前
3秒前
英俊的铭应助漂亮的振家采纳,获得10
3秒前
shuo0976完成签到,获得积分10
4秒前
研友_VZG7GZ应助blue2021采纳,获得30
4秒前
巨星不吃辣完成签到,获得积分10
4秒前
yeyeye发布了新的文献求助10
4秒前
lhh发布了新的文献求助10
4秒前
4秒前
FashionBoy应助风中早晨采纳,获得10
4秒前
菲常大机智关注了科研通微信公众号
5秒前
6秒前
Sun完成签到,获得积分10
6秒前
7秒前
dew发布了新的文献求助10
7秒前
罗小甜发布了新的文献求助10
8秒前
8秒前
9秒前
满满啊完成签到,获得积分10
9秒前
杨Eason完成签到,获得积分10
9秒前
pick完成签到,获得积分10
9秒前
最专业发布了新的文献求助10
9秒前
黑暗与黎明完成签到 ,获得积分10
10秒前
科目三应助张鑫采纳,获得10
10秒前
春风嬉蝉完成签到,获得积分10
10秒前
沈归尘完成签到,获得积分10
11秒前
Singularity应助养菌人采纳,获得10
11秒前
转身叶海完成签到,获得积分10
12秒前
12秒前
宇文听南发布了新的文献求助10
12秒前
小马甲应助贪玩的德地采纳,获得10
12秒前
Jefferson完成签到,获得积分10
13秒前
小强给LISHAN的求助进行了留言
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836