根际细菌
期限(时间)
人类受精
选择(遗传算法)
生物
农学
计算机科学
根际
遗传学
物理
细菌
人工智能
量子力学
作者
L. Zhang,Liang Yuan,Yanchen Wen,Meiling Zhang,Shuyu Huang,Shiyu Wang,Yuanzheng Zhao,Xiangxiang Hao,Lu‐Jun Li,Qiang Gao,Yin Wang,Shuiqing Zhang,Shaomin Huang,Kailou Liu,Xichu Yu,Dongchu Li,Jiukai Xu,Bingqiang Zhao,Lu Zhang,Huimin Zhang,Wei Zhou,Chao Ai
摘要
Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.
科研通智能强力驱动
Strongly Powered by AbleSci AI