Predicting the reversion from mild cognitive impairment to normal cognition based on magnetic resonance imaging, clinical, and neuropsychological examinations

神经心理学 磁共振成像 认知 队列 列线图 心理学 逻辑回归 内科学 医学 置信区间 心脏病学 放射科 精神科
作者
Haihong Yu,Chen‐Chen Tan,Shujuan Huang,Xinhao Zhang,Lan Tan,Wei Xu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:353: 90-98
标识
DOI:10.1016/j.jad.2024.03.009
摘要

Reversion from mild cognitive impairment (MCI) to normal cognition (NC) is not uncommon and indicates a better cognitive trajectory. This study aims to identify predictors of MCI reversion and develop a predicting model. A total of 391 MCI subjects (mean age = 74.3 years, female = 61 %) who had baseline data of magnetic resonance imaging, clinical, and neuropsychological measurements were followed for two years. Multivariate logistic analyses were used to identify the predictors of MCI reversion after adjusting for age and sex. A stepwise backward logistic regression model was used to construct a predictive nomogram for MCI reversion. The nomogram was validated by internal bootstrapping and in an independent cohort. In the training cohort, the 2-year reversion rate was 19.95 %. Predictors associated with reversion to NC were higher education level (p = 0.004), absence of APOE4 allele (p = 0.001), larger brain volume (p < 0.005), better neuropsychological measurements performance (p < 0.001), higher glomerular filtration rate (p = 0.035), and lower mean arterial pressure (p = 0.060). The nomogram incorporating five predictors (education, hippocampus volume, the Alzheimer's Disease Assessment Scale-Cognitive score, the Rey Auditory Verbal Learning Test-immediate score, and mean arterial pressure) achieved good C-indexes of 0.892 (95 % confidence interval [CI], 0.859–0.926) and 0.806 (95 % CI, 0.709–0.902) for the training and validation cohort. Observational duration is relatively short; The predicting model warrant further validation in larger samples. This prediction model could facilitate risk stratification and early management for the MCI population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深海的孤独哀完成签到,获得积分10
刚刚
1秒前
阳离子发布了新的文献求助10
1秒前
英姑应助逆天大脚采纳,获得10
2秒前
2秒前
watermelon完成签到,获得积分10
2秒前
0217发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
洪湖发布了新的文献求助10
5秒前
科研土人应助清新的宛筠采纳,获得10
6秒前
枯荣发布了新的文献求助10
6秒前
8秒前
8秒前
sincerely完成签到,获得积分10
8秒前
初余完成签到,获得积分10
9秒前
小新完成签到,获得积分10
9秒前
yuyu发布了新的文献求助10
10秒前
kaola发布了新的文献求助10
10秒前
10秒前
luo完成签到,获得积分10
10秒前
小胡发布了新的文献求助10
11秒前
小蘑菇应助考古学家米勒采纳,获得10
11秒前
英姑应助飞天小猫采纳,获得10
12秒前
小新发布了新的文献求助10
12秒前
Jasper应助南风屏采纳,获得10
12秒前
xxxwax发布了新的文献求助10
13秒前
额我认为发布了新的文献求助10
13秒前
初余发布了新的文献求助10
13秒前
15秒前
梁奕辉完成签到,获得积分10
17秒前
18秒前
18秒前
小左完成签到 ,获得积分10
18秒前
简单面包完成签到,获得积分10
18秒前
慕航完成签到,获得积分10
19秒前
完美世界应助酷酷冰之采纳,获得10
19秒前
枯荣完成签到,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465285
求助须知:如何正确求助?哪些是违规求助? 3058476
关于积分的说明 9061679
捐赠科研通 2748770
什么是DOI,文献DOI怎么找? 1508120
科研通“疑难数据库(出版商)”最低求助积分说明 696783
邀请新用户注册赠送积分活动 696467