BEV feature exchange pyramid networks-based 3D object detection in small and distant situations: A decentralized federated learning framework

棱锥(几何) 计算机科学 特征(语言学) 对象(语法) 人工智能 目标检测 机器学习 模式识别(心理学) 数学 哲学 语言学 几何学
作者
Rukai Lan,Yong Zhang,Linbo Xie,Zhaolong Wu,Yifan Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:583: 127476-127476 被引量:2
标识
DOI:10.1016/j.neucom.2024.127476
摘要

3D object detection, whose task is to perceive the surrounding environment, plays a significant role in autonomous driving. In this study, we propose a new BEV-FePNet 3D detection model, which can effectively fuse multi-modal information in deeply abstract features. The BEV-FePNet has been validated experimentally on the nuScenes dataset, and the findings demonstrate that the proposed approach enhances the performance of the detector and obtains 71.6 % mAP detection performance. In addition, with the rapid development of the autonomous driving market, collecting a large amount of data for autonomous driving has become one of the important means to enhance 3D detecting models' efficiency. However, local national data security policies have to be considered when autonomous driving manufacturers collect data in different countries, so it is difficult to transmit data abroad. To solve this problem, the DP-DeceFL framework has been proposed in this paper that utilizes differential privacy processing to enable information exchange between different countries without revealing sensitive information. Through the verification of nuScenes data, our proposed framework is superior to some selected federated learning frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
配角戏完成签到,获得积分10
2秒前
INE发布了新的文献求助10
2秒前
2秒前
3秒前
科研刘完成签到,获得积分20
4秒前
4秒前
一一应助SXYYXS采纳,获得10
4秒前
红糖驴完成签到,获得积分10
4秒前
生动的煎蛋完成签到,获得积分10
5秒前
缥缈的寄云完成签到,获得积分10
5秒前
qiu关闭了qiu文献求助
5秒前
fa发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
迟大猫应助可乐采纳,获得10
8秒前
ding应助9527采纳,获得10
8秒前
9秒前
9秒前
伶俐耷发布了新的文献求助10
10秒前
爱学习的小白完成签到,获得积分10
11秒前
11发布了新的文献求助10
13秒前
Orange应助无限秋天采纳,获得10
13秒前
Lucy完成签到 ,获得积分10
13秒前
bkagyin应助不卷心菜采纳,获得10
13秒前
乐观大雁发布了新的文献求助10
14秒前
安知发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
科研通AI5应助Liufuquan采纳,获得10
15秒前
邵101711完成签到,获得积分10
15秒前
乐乐应助珺珺珺采纳,获得10
16秒前
17秒前
CodeCraft应助专注篮球采纳,获得10
18秒前
18秒前
a3979107发布了新的文献求助10
18秒前
伶俐耷完成签到,获得积分20
19秒前
19秒前
hyyyyy123发布了新的文献求助10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797