IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

欠采样 迭代重建 计算机科学 人工智能 校准 计算机视觉 人工神经网络 代表(政治) 图像质量 算法 模式识别(心理学) 图像(数学) 数学 统计 政治 政治学 法学
作者
Ruimin Feng,Qing Wu,Jie Feng,Huajun She,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1539-1553 被引量:2
标识
DOI:10.1109/tmi.2023.3342156
摘要

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5× and 6× accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slp完成签到 ,获得积分10
1秒前
炼丹炉完成签到,获得积分10
3秒前
神勇的天问完成签到 ,获得积分10
7秒前
洁净的静芙完成签到 ,获得积分10
24秒前
Ruuo616完成签到 ,获得积分10
24秒前
无奈的邪欢完成签到,获得积分20
26秒前
风烟完成签到 ,获得积分10
26秒前
昊男的宝贝完成签到,获得积分10
28秒前
28秒前
朴素小霜完成签到 ,获得积分10
29秒前
口布鲁完成签到,获得积分20
35秒前
40秒前
wez19015发布了新的文献求助10
46秒前
优雅的千雁完成签到,获得积分10
48秒前
福娃完成签到,获得积分10
49秒前
benyu完成签到,获得积分10
55秒前
xiaoluoluo完成签到,获得积分10
55秒前
温暖糖豆完成签到 ,获得积分10
59秒前
聪慧语山完成签到 ,获得积分10
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
滴答完成签到,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
飘逸问薇完成签到 ,获得积分10
1分钟前
wangyu完成签到,获得积分10
1分钟前
1分钟前
谢尔顿完成签到,获得积分10
1分钟前
MADAO完成签到 ,获得积分10
1分钟前
wez19015完成签到,获得积分20
1分钟前
Touching完成签到 ,获得积分10
1分钟前
xiang完成签到 ,获得积分10
1分钟前
陈里里完成签到 ,获得积分10
1分钟前
tesla完成签到 ,获得积分10
1分钟前
沧海云完成签到 ,获得积分10
2分钟前
韧迹完成签到 ,获得积分10
2分钟前
nusiew完成签到,获得积分10
2分钟前
曾经的康乃馨完成签到 ,获得积分10
2分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111635
求助须知:如何正确求助?哪些是违规求助? 2761773
关于积分的说明 7667236
捐赠科研通 2416791
什么是DOI,文献DOI怎么找? 1282920
科研通“疑难数据库(出版商)”最低求助积分说明 619187
版权声明 599499