IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

欠采样 迭代重建 计算机科学 人工智能 校准 计算机视觉 人工神经网络 代表(政治) 图像质量 算法 模式识别(心理学) 图像(数学) 数学 统计 政治 政治学 法学
作者
Ruimin Feng,Qing Wu,Jie Feng,Huajun She,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1539-1553 被引量:5
标识
DOI:10.1109/tmi.2023.3342156
摘要

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at $5\times $ and $6\times $ accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追逐的疯完成签到 ,获得积分10
刚刚
彬墩墩完成签到,获得积分10
刚刚
Loeop发布了新的文献求助10
刚刚
hahhhhhh2发布了新的文献求助10
1秒前
1秒前
保奔完成签到,获得积分10
1秒前
KK发布了新的文献求助10
2秒前
2秒前
太想毕业了完成签到,获得积分10
2秒前
3秒前
LIKO完成签到,获得积分10
3秒前
Judson发布了新的文献求助10
3秒前
yugy完成签到,获得积分10
4秒前
Zoe完成签到,获得积分10
4秒前
孤独的猎手完成签到,获得积分10
4秒前
小呆完成签到 ,获得积分10
4秒前
zonker完成签到,获得积分10
4秒前
水沐菁华完成签到,获得积分10
4秒前
4秒前
wxh完成签到 ,获得积分10
5秒前
科目三应助林洛沁采纳,获得10
6秒前
6秒前
细胞不凋王女士完成签到,获得积分10
6秒前
zc完成签到,获得积分10
6秒前
多看文献发布了新的文献求助10
6秒前
言希完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
852应助Loeop采纳,获得10
7秒前
H哈完成签到,获得积分10
7秒前
PaoPao完成签到,获得积分10
7秒前
ceeray23发布了新的文献求助30
8秒前
ll完成签到,获得积分10
8秒前
科研通AI2S应助chenqinqin采纳,获得10
9秒前
王栋完成签到,获得积分20
9秒前
蒙蒙细雨完成签到,获得积分10
10秒前
shijiaoshou完成签到,获得积分10
10秒前
无极微光应助tjnusq采纳,获得20
10秒前
彭于晏应助施梦得采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977