IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

欠采样 迭代重建 计算机科学 人工智能 校准 计算机视觉 人工神经网络 代表(政治) 图像质量 算法 模式识别(心理学) 图像(数学) 数学 统计 政治 政治学 法学
作者
Ruimin Feng,Qing Wu,Jie Feng,Huajun She,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1539-1553 被引量:5
标识
DOI:10.1109/tmi.2023.3342156
摘要

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at $5\times $ and $6\times $ accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SQ_Liu发布了新的文献求助10
1秒前
sharkmelon发布了新的文献求助50
3秒前
3秒前
万物更始完成签到,获得积分10
3秒前
wanci应助研友_890wGZ采纳,获得10
4秒前
科研通AI6.1应助飘零枫叶采纳,获得10
4秒前
典雅的酬海完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
bkagyin应助玛卡巴卡采纳,获得10
8秒前
科研通AI2S应助wxy采纳,获得10
9秒前
无奈灵煌发布了新的文献求助10
9秒前
fufufu123完成签到 ,获得积分10
10秒前
sui发布了新的文献求助10
10秒前
苏ss发布了新的文献求助10
11秒前
爱壹帆完成签到,获得积分10
12秒前
jerry完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
华仔应助星辰坠于海采纳,获得10
14秒前
Zhi完成签到,获得积分10
15秒前
yyy完成签到 ,获得积分10
16秒前
16秒前
啊呀呀完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
11发布了新的文献求助10
18秒前
19秒前
19秒前
雨0926发布了新的文献求助20
20秒前
量子星尘发布了新的文献求助10
20秒前
MillionXie发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
椰汁完成签到 ,获得积分10
24秒前
Owen应助舒服的踏歌采纳,获得10
25秒前
梵凡完成签到,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749404
求助须知:如何正确求助?哪些是违规求助? 5458546
关于积分的说明 15363524
捐赠科研通 4888849
什么是DOI,文献DOI怎么找? 2628731
邀请新用户注册赠送积分活动 1577009
关于科研通互助平台的介绍 1533742