IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

欠采样 迭代重建 计算机科学 人工智能 校准 计算机视觉 人工神经网络 代表(政治) 图像质量 算法 模式识别(心理学) 图像(数学) 数学 统计 政治 政治学 法学
作者
Ruimin Feng,Qing Wu,Jie Feng,Huajun She,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1539-1553 被引量:5
标识
DOI:10.1109/tmi.2023.3342156
摘要

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at $5\times $ and $6\times $ accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫心完成签到,获得积分10
刚刚
不安青牛应助zy采纳,获得10
1秒前
南国之霄发布了新的文献求助10
2秒前
3秒前
mkljl发布了新的文献求助10
3秒前
4秒前
HDXHB发布了新的文献求助10
5秒前
张键豪发布了新的文献求助10
6秒前
fufu发布了新的文献求助10
7秒前
8秒前
柳亦诚应助坦率晓霜采纳,获得10
9秒前
9秒前
10秒前
周小鱼发布了新的文献求助10
12秒前
核桃应助fufu采纳,获得10
13秒前
浮游应助HOH采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
kk发布了新的文献求助10
16秒前
许晴发布了新的文献求助10
19秒前
nicole发布了新的文献求助10
19秒前
文艺水风完成签到 ,获得积分0
20秒前
20秒前
22秒前
22秒前
23秒前
微雨若,,完成签到 ,获得积分10
25秒前
羚羊完成签到,获得积分10
25秒前
26秒前
刘老哥6发布了新的文献求助10
26秒前
gougou发布了新的文献求助10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
鸣笛应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
28秒前
28秒前
小明应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536579
求助须知:如何正确求助?哪些是违规求助? 3971805
关于积分的说明 12304920
捐赠科研通 3638619
什么是DOI,文献DOI怎么找? 2003355
邀请新用户注册赠送积分活动 1038791
科研通“疑难数据库(出版商)”最低求助积分说明 928215