IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

欠采样 迭代重建 计算机科学 人工智能 校准 计算机视觉 人工神经网络 代表(政治) 图像质量 算法 模式识别(心理学) 图像(数学) 数学 统计 政治 政治学 法学
作者
Ruimin Feng,Qing Wu,Jie Feng,Huajun She,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1539-1553 被引量:5
标识
DOI:10.1109/tmi.2023.3342156
摘要

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at $5\times $ and $6\times $ accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨召发布了新的文献求助10
1秒前
2秒前
是人我吃完成签到,获得积分20
2秒前
白色保温杯完成签到,获得积分10
3秒前
上官若男应助Ang采纳,获得30
3秒前
4秒前
泥泥应助大小罐子采纳,获得20
4秒前
是人我吃发布了新的文献求助10
5秒前
wangp发布了新的文献求助30
5秒前
思源应助猪猪hero采纳,获得10
5秒前
在水一方应助WINWINNI采纳,获得10
5秒前
减肥为窈窕完成签到,获得积分10
5秒前
lalkiii完成签到,获得积分10
6秒前
长命百岁完成签到 ,获得积分10
6秒前
朴实惜天发布了新的文献求助10
7秒前
郭翔发布了新的文献求助10
7秒前
zyb发布了新的文献求助10
8秒前
8秒前
8秒前
慕青应助Tomin采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
清新的寄翠完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
球球应助小小人儿采纳,获得10
11秒前
11秒前
Elaine2021完成签到 ,获得积分10
11秒前
12秒前
筱筱发布了新的文献求助20
12秒前
无私的黄豆完成签到 ,获得积分10
13秒前
而与白醋发布了新的文献求助10
14秒前
BaekHyun完成签到,获得积分10
14秒前
李子完成签到 ,获得积分10
14秒前
泽Y完成签到 ,获得积分10
14秒前
勤奋尔冬完成签到 ,获得积分10
15秒前
A阿澍发布了新的文献求助10
15秒前
完美世界应助1147468624采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355