材料科学
光电探测器
光电子学
阻挡层
图层(电子)
纳米技术
作者
Qingyi Zhang,Dianmeng Dong,Fan Zhang,Yang Zhang,Zhenping Wu
标识
DOI:10.1016/j.matdes.2024.112823
摘要
Ga2O3-based solar-blind avalanche photodetectors (APDs) offer advantages such as compactness, low power consumption, and high stability. They could improve the integration and reliability of solar-blind photodetectors, and serve as a viable substitute for photomultiplier tubes (PMTs) in deep ultraviolet signal detection. We have previously demonstrated that the n-Barrier-n (nBn) structure, composed of Ga2O3/MgO/Nb:SrTiO3 heterostructure, can efficiently reduce the dark current and enhance the reverse breakdown voltage due to the increased conduction band offsets. The barrier layer is a key factor in determining the device performance in the nBn heterostructure. Hence, we further optimize the study by varying the thickness of the barrier layer MgO to examine its effect on the devices. This modulation can affect the avalanche multiplication process, and thus enable the tuning of APDs' performance. In this paper, we present the optimized thin film growth process, and the systematic investigation of the responsivity and gain of the device with different barrier layer thicknesses. The optimal performance was achieved with 25 nm MgO thickness. We also explore the underlying mechanism to elucidate the role of the barrier layer. Our results provide insights into the influence of barrier layer thickness in the nBn structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI