BERT-siRNA: siRNA target prediction based on BERT pre-trained interpretable model

生物 预处理器 基因敲除 计算机科学 人工智能 基因沉默 计算生物学 机器学习 感知器 RNA干扰 小干扰RNA 人工神经网络 转染 基因 核糖核酸 遗传学
作者
Jiayu Xu,Nan Xu,Weixin Xie,Chengkui Zhao,Lei Yu,Weixing Feng
出处
期刊:Gene [Elsevier]
卷期号:910: 148330-148330 被引量:2
标识
DOI:10.1016/j.gene.2024.148330
摘要

Silencing mRNA through siRNA is vital for RNA interference (RNAi), necessitating accurate computational methods for siRNA selection. Current approaches, relying on machine learning, often face challenges with large data requirements and intricate data preprocessing, leading to reduced accuracy. To address this challenge, we propose a BERT model-based siRNA target gene knockdown efficiency prediction method called BERT-siRNA, which consists of a pre-trained DNA-BERT module and Multilayer Perceptron module. It applies the concept of transfer learning to avoid the limitation of a small sample size and the need for extensive preprocessing processes. By fine-tuning on various siRNA datasets after pretraining on extensive genomic data using DNA-BERT to enhance predictive capabilities. Our model clearly outperforms all existing siRNA prediction models through testing on the independent public siRNA dataset. Furthermore, the model’s consistent predictions of high-efficiency siRNA knockdown for SARS-CoV-2, as well as its alignment with experimental results for PDCD1, CD38, and IL6, demonstrate the reliability and stability of the model. In addition, the attention scores for all 19-nt positions in the dataset indicate that the model’s attention is predominantly focused on the 5′ end of the siRNA. The step-by-step visualization of the hidden layer’s classification progressively clarified and explained the effective feature extraction of the MLP layer. The explainability of model by analysis the attention scores and hidden layers is also our main purpose in this work, making it more explainable and reliable for biological researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助jijahui采纳,获得80
1秒前
Jenny应助背后的诺言采纳,获得10
1秒前
木木完成签到,获得积分10
1秒前
赤邪发布了新的文献求助10
1秒前
1秒前
keen完成签到 ,获得积分10
1秒前
et完成签到,获得积分10
2秒前
桂魄完成签到,获得积分10
2秒前
2秒前
3秒前
wang发布了新的文献求助200
4秒前
4秒前
4秒前
英姑应助snowdrift采纳,获得10
4秒前
4秒前
4秒前
jy完成签到 ,获得积分10
4秒前
NexusExplorer应助立马毕业采纳,获得10
5秒前
在水一方应助123采纳,获得10
6秒前
科目三应助白华苍松采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
CipherSage应助千幻采纳,获得10
7秒前
7秒前
dddddd完成签到,获得积分10
7秒前
桂魄发布了新的文献求助10
7秒前
年轻的咖啡豆完成签到,获得积分20
8秒前
8秒前
绿洲发布了新的文献求助10
8秒前
8秒前
9秒前
aDou完成签到 ,获得积分10
9秒前
脑洞疼应助bc采纳,获得10
9秒前
NEMO发布了新的文献求助10
9秒前
李健应助mammoth采纳,获得20
9秒前
熊boy发布了新的文献求助10
9秒前
天真思雁发布了新的文献求助10
9秒前
10秒前
情怀应助蔡蔡不菜菜采纳,获得10
10秒前
shouyu29应助MADKAI采纳,获得10
11秒前
CipherSage应助MADKAI采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762