BERT-siRNA: siRNA target prediction based on BERT pre-trained interpretable model

生物 预处理器 基因敲除 计算机科学 人工智能 基因沉默 计算生物学 机器学习 感知器 RNA干扰 小干扰RNA 人工神经网络 转染 基因 核糖核酸 遗传学
作者
Jiayu Xu,Nan Xu,Weixin Xie,Chengkui Zhao,Lei Yu,Weixing Feng
出处
期刊:Gene [Elsevier BV]
卷期号:910: 148330-148330 被引量:3
标识
DOI:10.1016/j.gene.2024.148330
摘要

Silencing mRNA through siRNA is vital for RNA interference (RNAi), necessitating accurate computational methods for siRNA selection. Current approaches, relying on machine learning, often face challenges with large data requirements and intricate data preprocessing, leading to reduced accuracy. To address this challenge, we propose a BERT model-based siRNA target gene knockdown efficiency prediction method called BERT-siRNA, which consists of a pre-trained DNA-BERT module and Multilayer Perceptron module. It applies the concept of transfer learning to avoid the limitation of a small sample size and the need for extensive preprocessing processes. By fine-tuning on various siRNA datasets after pretraining on extensive genomic data using DNA-BERT to enhance predictive capabilities. Our model clearly outperforms all existing siRNA prediction models through testing on the independent public siRNA dataset. Furthermore, the model’s consistent predictions of high-efficiency siRNA knockdown for SARS-CoV-2, as well as its alignment with experimental results for PDCD1, CD38, and IL6, demonstrate the reliability and stability of the model. In addition, the attention scores for all 19-nt positions in the dataset indicate that the model’s attention is predominantly focused on the 5′ end of the siRNA. The step-by-step visualization of the hidden layer’s classification progressively clarified and explained the effective feature extraction of the MLP layer. The explainability of model by analysis the attention scores and hidden layers is also our main purpose in this work, making it more explainable and reliable for biological researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助单薄月饼采纳,获得10
1秒前
2秒前
2秒前
huangwenyu完成签到,获得积分10
3秒前
星辰大海应助Star-XYX采纳,获得10
3秒前
动听听安完成签到,获得积分20
4秒前
elastin完成签到,获得积分10
5秒前
chcmuer发布了新的文献求助10
5秒前
阅知发布了新的文献求助10
5秒前
YUNJIE发布了新的文献求助10
5秒前
sanwan完成签到,获得积分10
6秒前
柯一一应助weiwei采纳,获得10
6秒前
7秒前
可爱的小桃完成签到,获得积分10
8秒前
8秒前
Min完成签到,获得积分10
8秒前
guagua发布了新的文献求助10
8秒前
zhihan完成签到,获得积分10
9秒前
9秒前
nbing完成签到,获得积分10
10秒前
王小聪明发布了新的文献求助10
10秒前
jhw发布了新的文献求助10
11秒前
在水一方应助keyanqianjin采纳,获得10
12秒前
充电宝应助Marshzz采纳,获得10
12秒前
13秒前
牛0254发布了新的文献求助10
13秒前
张菁完成签到,获得积分10
14秒前
pluto应助义气猫咪采纳,获得10
15秒前
16秒前
guagua完成签到,获得积分10
16秒前
动听听安关注了科研通微信公众号
17秒前
17秒前
Ava应助黎明采纳,获得10
18秒前
biubiu完成签到,获得积分10
19秒前
ding应助猪猪hero采纳,获得10
19秒前
19秒前
小盒儿发布了新的文献求助10
20秒前
香蕉觅云应助鉨汏闫采纳,获得10
20秒前
青仔仔完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651