Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers With Partially Annotated Ultrasound Images

计算机辅助设计 计算机辅助诊断 人工智能 感兴趣区域 深度学习 医学 乳腺摄影术 乳腺超声检查 阶段(地层学) 注释 人工神经网络 乳腺癌 计算机科学 模式识别(心理学) 机器学习 癌症 内科学 工程类 古生物学 工程制图 生物
作者
J. Wang,Liang Qiao,Shichong Zhou,Jin Zhou,Jun Wang,Juncheng Li,Shihui Ying,Cai Chang,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2509-2521 被引量:10
标识
DOI:10.1109/tmi.2024.3366940
摘要

Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automatic CAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation to limit the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to improve diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the initial ROI-level labels are considered as coarse annotations before model training. In the first training stage, a candidate selection mechanism is then designed to refine manual ROIs in the fully annotated images and generate accurate pseudo-ROIs for the partially annotated images under the guidance of class labels. The training set is updated with more accurate ROI labels for the second training stage. A fusion network is developed to integrate detection network and classification network into a unified end-to-end framework as the final CAD model in the second training stage. A self-distillation strategy is designed on this model for joint optimization to further improves its diagnosis performance. The proposed TSDDNet is evaluated on three B-mode ultrasound datasets, and the experimental results indicate that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
胖虎完成签到 ,获得积分10
刚刚
CodeCraft应助jason采纳,获得10
1秒前
1秒前
嗯哈发布了新的文献求助10
2秒前
王涛发布了新的文献求助10
4秒前
xx发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
lorryyyy发布了新的文献求助10
5秒前
wanci应助Lee采纳,获得10
7秒前
xxfsx应助凯凯采纳,获得10
8秒前
苏苏完成签到,获得积分10
8秒前
8秒前
9秒前
风趣的寻凝完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
磨人的老妖精完成签到,获得积分10
13秒前
Guochunbao发布了新的文献求助10
15秒前
ddup发布了新的文献求助20
16秒前
17秒前
jia雪发布了新的文献求助10
18秒前
孙文杰完成签到 ,获得积分10
18秒前
konya完成签到,获得积分10
19秒前
Tracey16发布了新的文献求助10
19秒前
幸运发布了新的文献求助10
21秒前
21秒前
22秒前
星星泡饭完成签到,获得积分10
22秒前
22秒前
fan发布了新的文献求助20
22秒前
希望天下0贩的0应助耳喃采纳,获得10
22秒前
小马甲应助虚幻的海白采纳,获得10
22秒前
可爱的函函应助ddup采纳,获得10
23秒前
23秒前
隐形曼青应助落花生采纳,获得20
24秒前
李雩完成签到 ,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474