柯肯德尔效应
结晶度
材料科学
半导体
等离子体子
纳米技术
固溶体
化学工程
冶金
光电子学
复合材料
工程类
作者
Tailei Hou,Xinyuan Li,Xiuming Zhang,Rongsheng Cai,Yi‐Chi Wang,Akang Chen,Hongfei Gu,Mengyao Su,Shouyuan Li,Qizhen Li,Leining Zhang,Sarah J. Haigh,Jiatao Zhang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-02-20
卷期号:24 (9): 2719-2726
被引量:6
标识
DOI:10.1021/acs.nanolett.3c04337
摘要
Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core–shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.
科研通智能强力驱动
Strongly Powered by AbleSci AI