Digital Wellbore Stability Prediction with Machine Learning

井筒 理论(学习稳定性) 计算机科学 人工智能 机器学习 石油工程 地质学
作者
Peng Liu,Jian Li,Bo Chen,Gongrui Yan,Qihong Lei,Lin Liang,Yansong Huang,Haipeng Zhao,Gai‐Ge Wang,Maoyou Sun
标识
DOI:10.2523/iptc-23359-ms
摘要

Abstract One of the main challenges during drilling is wellbore instability. Traditionally, geomechanical model construction and wellbore stability (WBS) analysis are manually executed by geomechanics experts for well planning and drilling. The procedures are usually complicated and time-consuming due to subsurface complexity, and the results highly depend on the executor's expertise. This makes WBS analysis far from ideal and automatic. In this study, we present a physics-incorporated machine learning method that performs WBS analysis in a simple and automatic way. First, it characterizes and digitalizes subsurface geostructures geometry by labeling formations and its lithology. Then, it trains a digital geomechanics model using a series of machine learning algorithms with existing data, such as geology, well logs, drilling data, and geomechanical data. The rock mechanical properties, including rock elastic modulus and rock strength, are trained as formation material property models which describe the changing patterns in each formation. The formation pore pressure and in-situ earth stresses are trained using a physics-based hybrid algorithms, taking into account formation compaction and tectonic settings. Lastly, wellbore stability along any planned well trajectories can be predicted using this digital geomechanics model to identify drilling risks, optimize safe mud weight, and hence improve drilling practices. This digital approach was tested and validated in a shale oil field in Ordos Basin, China. In this field, horizonal wells are drilled targeting a shale oil reservoir, this requires pre-drill WBS analysis, which usually takes several weeks following a manual methodology. With the developed new method, the digital geomechanical model was trained with seven surfaces representing different geological formations and well data from six existing vertical wells. The digital model and WBS results, including formation collapse pressure, mud loss pressure and breakdown pressure, were then compared against manual results calculated by geomechanics experts using traditional methods. The digital results matched well with manual results. The comparison demonstrated the applicability and reliability with a learning accuracy of over 99%. With this digital model, the geomechanical properties and WBS analysis of five planned horizontal wells were accurately predicted and proved consistent with actual drilling results. Another significant advantage is the high computational efficiency and reduced need for supervision. In this case, the digital machine-learning method reduced the WBS analysis time for five wells from weeks to hours. This field case confirms the effectiveness and efficiency of transferring domain knowledge and data into digital models, it enables support for massive cluster horizontal drilling activities on well pad and field scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个有点长的序完成签到 ,获得积分10
刚刚
孙淳完成签到,获得积分10
1秒前
1秒前
YYJ25发布了新的文献求助10
2秒前
Jzhang应助tmpstlml采纳,获得10
3秒前
微笑的南露完成签到 ,获得积分10
3秒前
豌豆关注了科研通微信公众号
3秒前
6秒前
笨笨善若完成签到,获得积分10
8秒前
hs完成签到,获得积分20
8秒前
ZHANGMANLI0422完成签到,获得积分10
8秒前
susu关注了科研通微信公众号
10秒前
DYuH23完成签到,获得积分10
11秒前
12秒前
爱静静应助DHL采纳,获得10
12秒前
12秒前
sunny661104完成签到 ,获得积分10
13秒前
简单完成签到 ,获得积分10
13秒前
尘林发布了新的文献求助10
13秒前
Z-先森完成签到,获得积分0
14秒前
苏源智发布了新的文献求助10
14秒前
伯赏诗霜完成签到,获得积分10
15秒前
NN应助LIn采纳,获得10
16秒前
16秒前
超级无敌学术苦瓜完成签到,获得积分10
16秒前
16秒前
Zn应助111采纳,获得10
17秒前
舒适静丹完成签到,获得积分10
18秒前
丽颖发布了新的文献求助10
19秒前
cui完成签到,获得积分10
19秒前
lixm完成签到,获得积分10
19秒前
yyyyy语言完成签到,获得积分10
19秒前
栗子完成签到,获得积分10
20秒前
卧镁铀钳完成签到 ,获得积分10
21秒前
DHL完成签到,获得积分10
22秒前
TT发布了新的文献求助10
22秒前
小蘑菇应助科研通管家采纳,获得30
23秒前
terence应助科研通管家采纳,获得30
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849