已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital Wellbore Stability Prediction with Machine Learning

井筒 理论(学习稳定性) 计算机科学 人工智能 机器学习 石油工程 地质学
作者
Peng Liu,Jian Li,Bo Chen,Gongrui Yan,Qihong Lei,Lin Liang,Yansong Huang,Haipeng Zhao,Gai‐Ge Wang,Maoyou Sun
标识
DOI:10.2523/iptc-23359-ms
摘要

Abstract One of the main challenges during drilling is wellbore instability. Traditionally, geomechanical model construction and wellbore stability (WBS) analysis are manually executed by geomechanics experts for well planning and drilling. The procedures are usually complicated and time-consuming due to subsurface complexity, and the results highly depend on the executor's expertise. This makes WBS analysis far from ideal and automatic. In this study, we present a physics-incorporated machine learning method that performs WBS analysis in a simple and automatic way. First, it characterizes and digitalizes subsurface geostructures geometry by labeling formations and its lithology. Then, it trains a digital geomechanics model using a series of machine learning algorithms with existing data, such as geology, well logs, drilling data, and geomechanical data. The rock mechanical properties, including rock elastic modulus and rock strength, are trained as formation material property models which describe the changing patterns in each formation. The formation pore pressure and in-situ earth stresses are trained using a physics-based hybrid algorithms, taking into account formation compaction and tectonic settings. Lastly, wellbore stability along any planned well trajectories can be predicted using this digital geomechanics model to identify drilling risks, optimize safe mud weight, and hence improve drilling practices. This digital approach was tested and validated in a shale oil field in Ordos Basin, China. In this field, horizonal wells are drilled targeting a shale oil reservoir, this requires pre-drill WBS analysis, which usually takes several weeks following a manual methodology. With the developed new method, the digital geomechanical model was trained with seven surfaces representing different geological formations and well data from six existing vertical wells. The digital model and WBS results, including formation collapse pressure, mud loss pressure and breakdown pressure, were then compared against manual results calculated by geomechanics experts using traditional methods. The digital results matched well with manual results. The comparison demonstrated the applicability and reliability with a learning accuracy of over 99%. With this digital model, the geomechanical properties and WBS analysis of five planned horizontal wells were accurately predicted and proved consistent with actual drilling results. Another significant advantage is the high computational efficiency and reduced need for supervision. In this case, the digital machine-learning method reduced the WBS analysis time for five wells from weeks to hours. This field case confirms the effectiveness and efficiency of transferring domain knowledge and data into digital models, it enables support for massive cluster horizontal drilling activities on well pad and field scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁臂阿童木完成签到 ,获得积分10
2秒前
情怀应助感动的广缘采纳,获得10
3秒前
7秒前
眼镜胖子完成签到,获得积分10
10秒前
guozizi发布了新的文献求助10
11秒前
jaffe发布了新的文献求助10
13秒前
zhengzehong完成签到,获得积分10
14秒前
15秒前
我是老大应助如意的易绿采纳,获得10
16秒前
李健的小迷弟应助徐志豪采纳,获得10
18秒前
echo完成签到 ,获得积分10
18秒前
book卟发布了新的文献求助10
18秒前
运运完成签到 ,获得积分10
19秒前
火龙果发布了新的文献求助10
19秒前
TCL完成签到 ,获得积分10
24秒前
26秒前
神说要有光完成签到 ,获得积分10
29秒前
感动的广缘完成签到,获得积分20
30秒前
32秒前
cherish发布了新的文献求助10
38秒前
Blackmoon发布了新的文献求助10
39秒前
听春风完成签到 ,获得积分10
40秒前
清新的宛丝完成签到,获得积分10
41秒前
追梦远行人完成签到 ,获得积分10
44秒前
爱听歌的悒完成签到 ,获得积分10
45秒前
汉堡包应助朴实的小萱采纳,获得10
46秒前
爱读文献完成签到 ,获得积分10
48秒前
FashionBoy应助辣椒采纳,获得10
49秒前
野性的小松鼠完成签到 ,获得积分10
49秒前
不吃番茄完成签到 ,获得积分10
51秒前
木子完成签到,获得积分10
51秒前
开心的野狼完成签到 ,获得积分0
53秒前
冷冷暴力发布了新的文献求助10
54秒前
Akim应助米奇妙妙屋采纳,获得10
55秒前
55秒前
大模型应助感动的广缘采纳,获得10
1分钟前
yx_cheng应助jaffe采纳,获得10
1分钟前
三岁半完成签到 ,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
顾矜应助灵巧尔云采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994596
求助须知:如何正确求助?哪些是违规求助? 3534893
关于积分的说明 11266757
捐赠科研通 3274743
什么是DOI,文献DOI怎么找? 1806464
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749