Improving the estimation accuracy of soil organic matter based on the fusion of near-infrared and Raman spectroscopy using the outer-product analysis

拉曼光谱 偏最小二乘回归 红外线的 主成分分析 光谱学 分析化学(期刊) 材料科学 传感器融合 生物系统 化学计量学 高光谱成像 红外光谱学 近红外光谱 遥感 人工智能 化学 计算机科学 光学 环境化学 物理 地质学 机器学习 生物 量子力学 有机化学
作者
Yu Bai,Wei Yang,Zhao‐Yang Wang,Yong‐Yan Cao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108760-108760 被引量:10
标识
DOI:10.1016/j.compag.2024.108760
摘要

Accurate estimation of soil organic matter (SOM) content is of great significance for advancing precision agriculture and assessing carbon storage. Proximal sensing techniques, such as near-infrared spectroscopy (NIR) and Raman spectroscopy, provide effective means for rapidly acquiring soil information. However, quantitative estimation of soil parameters using Raman spectroscopy has been challenged by inaccurate estimation results, which has restricted the widespread application of Raman spectroscopy in SOM estimation. The fusion of complementary information from multi-sensor data has been considered as one of the feasible solutions to address the poor results of single-sensor estimation. Therefore, the study on SOM estimation based on spectral data fusion was carried out by evaluating the effects on estimation performance under different fusion strategies. In this study, 258 soil samples from the North China, along with their corresponding near-infrared spectra and Raman spectra were collected and the spectral data was fused by two strategies involved direct concatenation (DC) and outer-product analysis (OPA). The SOM estimation performance of random forest (RF) and partial least squares (PLS) models constructed based on independent spectra data (NIR spectra, Raman spectra before baseline correction, Raman spectra after baseline correction), spectral data fused by DC, and spectral data fused by OPA were evaluated, respectively. The results indicated that the fusion of near-infrared spectroscopy and Raman spectroscopy could improve the poor performance of using Raman spectroscopy independently for quantitative estimation of SOM; Furthermore, OPA was a more effective fusion strategy compared with DC, significantly improving the estimation accuracy of the model. In addition, the PLS model constructed based on OPA fused spectral data achieved the best estimation accuracy, with R2, RMSE, and RPD of 0.903, 2.594 g/kg, and 3.061 on the validation set, respectively. This study can provide a technical support for accurately estimating the content of SOM using proximal spectroscopy technologies, contributing to the improvement of soil management practices in the context of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oldblack完成签到,获得积分10
2秒前
tong完成签到,获得积分10
2秒前
淡然的菲鹰完成签到 ,获得积分10
2秒前
善良的剑通完成签到,获得积分10
2秒前
喜悦山柳发布了新的文献求助10
3秒前
左眼天堂完成签到,获得积分10
3秒前
科目三应助科研人才采纳,获得10
3秒前
浪子发布了新的文献求助20
4秒前
不帅不要钱完成签到,获得积分10
6秒前
SY发布了新的文献求助10
6秒前
7秒前
Jasper应助Sunflower采纳,获得10
7秒前
无辜茗完成签到 ,获得积分10
8秒前
gao完成签到 ,获得积分0
10秒前
10秒前
最好是完成签到,获得积分10
11秒前
义气怀蕾应助感性的念桃采纳,获得10
11秒前
12秒前
科研欣路完成签到,获得积分10
12秒前
真三完成签到,获得积分10
12秒前
巴拉巴拉完成签到 ,获得积分10
12秒前
13秒前
小HO完成签到,获得积分10
13秒前
浪子完成签到,获得积分10
13秒前
高大的凝芙完成签到,获得积分20
14秒前
优雅的怀莲完成签到,获得积分10
15秒前
核桃发布了新的文献求助10
16秒前
阿尼拉姆发布了新的文献求助10
17秒前
大包鸡完成签到 ,获得积分10
17秒前
科研人才发布了新的文献求助10
18秒前
瘦瘦的迎南完成签到 ,获得积分10
18秒前
甜蜜邑发布了新的文献求助10
18秒前
18秒前
HU完成签到,获得积分10
19秒前
活力的兔子完成签到,获得积分10
19秒前
20秒前
风中冰香应助SY采纳,获得10
21秒前
21秒前
小王完成签到,获得积分10
22秒前
乐乐应助Sunflower采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662