Improving the estimation accuracy of soil organic matter based on the fusion of near-infrared and Raman spectroscopy using the outer-product analysis

拉曼光谱 偏最小二乘回归 红外线的 主成分分析 光谱学 分析化学(期刊) 材料科学 传感器融合 生物系统 化学计量学 高光谱成像 红外光谱学 近红外光谱 遥感 人工智能 化学 计算机科学 光学 环境化学 物理 地质学 机器学习 生物 量子力学 有机化学
作者
Yu Bai,Wei Yang,Zhao‐Yang Wang,Yong‐Yan Cao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108760-108760 被引量:10
标识
DOI:10.1016/j.compag.2024.108760
摘要

Accurate estimation of soil organic matter (SOM) content is of great significance for advancing precision agriculture and assessing carbon storage. Proximal sensing techniques, such as near-infrared spectroscopy (NIR) and Raman spectroscopy, provide effective means for rapidly acquiring soil information. However, quantitative estimation of soil parameters using Raman spectroscopy has been challenged by inaccurate estimation results, which has restricted the widespread application of Raman spectroscopy in SOM estimation. The fusion of complementary information from multi-sensor data has been considered as one of the feasible solutions to address the poor results of single-sensor estimation. Therefore, the study on SOM estimation based on spectral data fusion was carried out by evaluating the effects on estimation performance under different fusion strategies. In this study, 258 soil samples from the North China, along with their corresponding near-infrared spectra and Raman spectra were collected and the spectral data was fused by two strategies involved direct concatenation (DC) and outer-product analysis (OPA). The SOM estimation performance of random forest (RF) and partial least squares (PLS) models constructed based on independent spectra data (NIR spectra, Raman spectra before baseline correction, Raman spectra after baseline correction), spectral data fused by DC, and spectral data fused by OPA were evaluated, respectively. The results indicated that the fusion of near-infrared spectroscopy and Raman spectroscopy could improve the poor performance of using Raman spectroscopy independently for quantitative estimation of SOM; Furthermore, OPA was a more effective fusion strategy compared with DC, significantly improving the estimation accuracy of the model. In addition, the PLS model constructed based on OPA fused spectral data achieved the best estimation accuracy, with R2, RMSE, and RPD of 0.903, 2.594 g/kg, and 3.061 on the validation set, respectively. This study can provide a technical support for accurately estimating the content of SOM using proximal spectroscopy technologies, contributing to the improvement of soil management practices in the context of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助youasheng采纳,获得10
刚刚
楼台杏花琴弦完成签到,获得积分10
1秒前
ronnie发布了新的文献求助10
1秒前
2秒前
2秒前
yar应助疯狂的雁荷采纳,获得10
2秒前
2秒前
爆米花应助bian采纳,获得10
2秒前
英姑应助燕天与采纳,获得10
3秒前
3秒前
彭于晏应助昏睡的炎彬采纳,获得10
3秒前
3秒前
完美世界应助嘟嘟采纳,获得10
4秒前
研友_Z1WrgL发布了新的文献求助10
4秒前
LIANG发布了新的文献求助10
4秒前
超级铅笔发布了新的文献求助10
5秒前
黑熊安巴尼完成签到,获得积分20
5秒前
大个应助小鱼采纳,获得10
5秒前
6秒前
丘比特应助欣喜念桃采纳,获得10
6秒前
6秒前
7秒前
7秒前
yKkkkkk发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
9秒前
youasheng完成签到,获得积分10
9秒前
芝儿完成签到 ,获得积分10
10秒前
学术八戒1025完成签到,获得积分10
10秒前
10秒前
sakegeda完成签到,获得积分10
11秒前
Whale发布了新的文献求助10
11秒前
12秒前
炸鸡柳完成签到,获得积分10
12秒前
情怀应助超级铅笔采纳,获得10
12秒前
无花果应助Bigbiglei采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130