Improving the estimation accuracy of soil organic matter based on the fusion of near-infrared and Raman spectroscopy using the outer-product analysis

拉曼光谱 融合 红外线的 光谱学 分析化学(期刊) 材料科学 传感器融合 生物系统 产品(数学) 近红外光谱 有机质 遥感 环境科学 人工智能 化学 计算机科学 光学 环境化学 物理 数学 地质学 生物 哲学 语言学 几何学 有机化学 量子力学
作者
Bo Yu,Wenhan Yang,Zhaoyang Wang,Yanlong Cao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108760-108760
标识
DOI:10.1016/j.compag.2024.108760
摘要

Accurate estimation of soil organic matter (SOM) content is of great significance for advancing precision agriculture and assessing carbon storage. Proximal sensing techniques, such as near-infrared spectroscopy (NIR) and Raman spectroscopy, provide effective means for rapidly acquiring soil information. However, quantitative estimation of soil parameters using Raman spectroscopy has been challenged by inaccurate estimation results, which has restricted the widespread application of Raman spectroscopy in SOM estimation. The fusion of complementary information from multi-sensor data has been considered as one of the feasible solutions to address the poor results of single-sensor estimation. Therefore, the study on SOM estimation based on spectral data fusion was carried out by evaluating the effects on estimation performance under different fusion strategies. In this study, 258 soil samples from the North China, along with their corresponding near-infrared spectra and Raman spectra were collected and the spectral data was fused by two strategies involved direct concatenation (DC) and outer-product analysis (OPA). The SOM estimation performance of random forest (RF) and partial least squares (PLS) models constructed based on independent spectra data (NIR spectra, Raman spectra before baseline correction, Raman spectra after baseline correction), spectral data fused by DC, and spectral data fused by OPA were evaluated, respectively. The results indicated that the fusion of near-infrared spectroscopy and Raman spectroscopy could improve the poor performance of using Raman spectroscopy independently for quantitative estimation of SOM; Furthermore, OPA was a more effective fusion strategy compared with DC, significantly improving the estimation accuracy of the model. In addition, the PLS model constructed based on OPA fused spectral data achieved the best estimation accuracy, with R2, RMSE, and RPD of 0.903, 2.594 g/kg, and 3.061 on the validation set, respectively. This study can provide a technical support for accurately estimating the content of SOM using proximal spectroscopy technologies, contributing to the improvement of soil management practices in the context of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助fairy采纳,获得20
刚刚
清澄完成签到,获得积分10
1秒前
晓雯发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
俏皮的千秋完成签到,获得积分20
3秒前
牛豁完成签到,获得积分10
4秒前
传奇3应助抹茶肥肠采纳,获得10
4秒前
xinxin完成签到,获得积分10
5秒前
失眠的电脑完成签到,获得积分10
5秒前
完美世界应助米花采纳,获得10
5秒前
于清绝完成签到 ,获得积分10
5秒前
废寝忘食发布了新的文献求助10
6秒前
6秒前
7秒前
熠熠发布了新的文献求助10
7秒前
吉师大_科研完成签到,获得积分10
7秒前
余铸海完成签到,获得积分10
7秒前
Novajet发布了新的文献求助10
7秒前
8秒前
谭一一发布了新的文献求助20
9秒前
cc完成签到 ,获得积分10
9秒前
9秒前
10秒前
12秒前
12秒前
阿毛ya发布了新的文献求助10
14秒前
小蘑菇应助晨曦采纳,获得10
15秒前
zhao完成签到,获得积分20
16秒前
17秒前
17秒前
lee发布了新的文献求助10
17秒前
聪慧听南发布了新的文献求助10
17秒前
sdniuidifod发布了新的文献求助10
18秒前
18秒前
18秒前
上官若男应助fairy采纳,获得10
20秒前
21秒前
小点点发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302103
求助须知:如何正确求助?哪些是违规求助? 2936595
关于积分的说明 8478287
捐赠科研通 2610377
什么是DOI,文献DOI怎么找? 1425135
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646476