清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization

异常检测 修补 人工智能 计算机科学 计算机视觉 图像(数学)
作者
Wei Luo,Haiming Yao,Wenyong Yu,Zhengyong Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tase.2024.3368142
摘要

Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel Adaptive Mask Inpainting Network (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Note to Practitioners —AMI-Net restores defective images to normal ones and subsequently detects defects by leveraging the differences between them. This method only needs to collect about a few hundred defect-free samples for training, without the need for additional defect samples. It is noteworthy that AMI-Net is applicable not only to the detection of simple texture surface defects, such as carpet, leather, and tile, but also to the detection of surface defects in objects with posture diversity, such as cable, transistor, and screw. The trained model not only exhibits high detection accuracy but also demonstrates superior real-time performance, showcasing significant potential in practical industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
贰壹完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
zzz发布了新的文献求助10
1分钟前
1分钟前
彩色亿先完成签到 ,获得积分10
1分钟前
yueyueyahoo完成签到,获得积分10
1分钟前
zzz完成签到,获得积分10
1分钟前
1分钟前
daomaihu完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分0
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
muriel完成签到,获得积分0
2分钟前
如歌完成签到,获得积分10
2分钟前
3分钟前
3分钟前
叶潭发布了新的文献求助10
3分钟前
Amberwdd完成签到,获得积分10
4分钟前
爆米花应助幸运的姜姜采纳,获得10
4分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
进取拼搏完成签到,获得积分10
5分钟前
5分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
LINDENG2004完成签到 ,获得积分10
6分钟前
Amberwdd发布了新的文献求助10
6分钟前
浮游应助Amberwdd采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
7分钟前
深情安青应助zzh采纳,获得10
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450193
求助须知:如何正确求助?哪些是违规求助? 4558052
关于积分的说明 14265353
捐赠科研通 4481444
什么是DOI,文献DOI怎么找? 2454845
邀请新用户注册赠送积分活动 1445610
关于科研通互助平台的介绍 1421565