AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization

异常检测 修补 人工智能 计算机科学 计算机视觉 图像(数学)
作者
Wei Luo,Haiming Yao,Wenyong Yu,Zhengyong Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tase.2024.3368142
摘要

Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel Adaptive Mask Inpainting Network (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Note to Practitioners —AMI-Net restores defective images to normal ones and subsequently detects defects by leveraging the differences between them. This method only needs to collect about a few hundred defect-free samples for training, without the need for additional defect samples. It is noteworthy that AMI-Net is applicable not only to the detection of simple texture surface defects, such as carpet, leather, and tile, but also to the detection of surface defects in objects with posture diversity, such as cable, transistor, and screw. The trained model not only exhibits high detection accuracy but also demonstrates superior real-time performance, showcasing significant potential in practical industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Ricky采纳,获得10
1秒前
子唯完成签到,获得积分10
4秒前
4秒前
shinn发布了新的文献求助10
5秒前
5秒前
8秒前
悦耳的柠檬完成签到,获得积分10
10秒前
10秒前
bububusbu发布了新的文献求助10
11秒前
无花果应助年轻的烨华采纳,获得10
12秒前
任侠传发布了新的文献求助10
12秒前
Vxfhfdhkcds发布了新的文献求助10
13秒前
psychedeng完成签到,获得积分10
13秒前
Alice发布了新的文献求助10
16秒前
Ricky发布了新的文献求助10
16秒前
英姑应助年轻的仙人掌采纳,获得10
20秒前
xiaobo完成签到,获得积分10
22秒前
WD发布了新的文献求助10
22秒前
善学以致用应助浑灵安采纳,获得10
24秒前
25秒前
聪慧板凳完成签到,获得积分10
25秒前
26秒前
桐桐应助shinn采纳,获得10
26秒前
李爱国应助任侠传采纳,获得10
27秒前
28秒前
Tangerine完成签到,获得积分10
28秒前
燕燕于飞发布了新的文献求助10
28秒前
不厌完成签到,获得积分10
29秒前
花花发布了新的文献求助10
29秒前
傅英俊完成签到,获得积分10
30秒前
怕孤单的雪兰完成签到,获得积分20
31秒前
32秒前
aaa发布了新的文献求助10
32秒前
32秒前
英姑应助moonbeam采纳,获得10
33秒前
yyauthor发布了新的文献求助10
33秒前
刀锋完成签到,获得积分10
35秒前
35秒前
36秒前
Vxfhfdhkcds完成签到 ,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450