AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization

异常检测 修补 人工智能 计算机科学 计算机视觉 图像(数学)
作者
Wei Luo,Haiming Yao,Wenyong Yu,Zhengyong Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tase.2024.3368142
摘要

Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel Adaptive Mask Inpainting Network (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Note to Practitioners —AMI-Net restores defective images to normal ones and subsequently detects defects by leveraging the differences between them. This method only needs to collect about a few hundred defect-free samples for training, without the need for additional defect samples. It is noteworthy that AMI-Net is applicable not only to the detection of simple texture surface defects, such as carpet, leather, and tile, but also to the detection of surface defects in objects with posture diversity, such as cable, transistor, and screw. The trained model not only exhibits high detection accuracy but also demonstrates superior real-time performance, showcasing significant potential in practical industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东北彪问发布了新的文献求助10
刚刚
1秒前
邢智翔发布了新的文献求助10
1秒前
1秒前
1秒前
Doctor.Xie发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
渣渣梅完成签到,获得积分10
4秒前
tong77发布了新的文献求助10
5秒前
loren发布了新的文献求助40
5秒前
量子星尘发布了新的文献求助10
6秒前
moyan完成签到 ,获得积分10
6秒前
万能图书馆应助BB采纳,获得10
7秒前
7秒前
8秒前
Fred发布了新的文献求助10
8秒前
NexusExplorer应助jzy采纳,获得10
8秒前
科龙发布了新的文献求助10
9秒前
王娜发布了新的文献求助10
9秒前
SWZ完成签到,获得积分10
10秒前
牛马研究生完成签到,获得积分10
11秒前
11秒前
曾经书翠完成签到,获得积分20
12秒前
烟花应助小郑开心努力采纳,获得10
13秒前
13秒前
微笑立轩完成签到,获得积分10
14秒前
SWZ发布了新的文献求助100
14秒前
17秒前
方远锋完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
发发发完成签到 ,获得积分10
20秒前
今后应助SJ_Wang采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019