AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization

异常检测 修补 人工智能 计算机科学 计算机视觉 图像(数学)
作者
Wei Luo,Haiming Yao,Wenyong Yu,Zhengyong Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tase.2024.3368142
摘要

Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel Adaptive Mask Inpainting Network (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Note to Practitioners —AMI-Net restores defective images to normal ones and subsequently detects defects by leveraging the differences between them. This method only needs to collect about a few hundred defect-free samples for training, without the need for additional defect samples. It is noteworthy that AMI-Net is applicable not only to the detection of simple texture surface defects, such as carpet, leather, and tile, but also to the detection of surface defects in objects with posture diversity, such as cable, transistor, and screw. The trained model not only exhibits high detection accuracy but also demonstrates superior real-time performance, showcasing significant potential in practical industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助lwl采纳,获得10
刚刚
凉小远发布了新的文献求助10
刚刚
1秒前
cl发布了新的文献求助10
1秒前
Akim应助养不活的细胞采纳,获得10
1秒前
学海无涯完成签到,获得积分10
3秒前
www完成签到,获得积分10
4秒前
5秒前
5秒前
wlscj给壮观咖啡豆的求助进行了留言
5秒前
sansronds发布了新的文献求助10
6秒前
wlscj应助橡皮鸭队长采纳,获得20
7秒前
辞镜发布了新的文献求助10
7秒前
青年才俊发布了新的文献求助10
8秒前
kaiqiang发布了新的文献求助30
8秒前
9秒前
10秒前
10秒前
wenny完成签到,获得积分10
10秒前
猪猪侠发布了新的文献求助10
11秒前
app完成签到,获得积分10
11秒前
整齐从蓉完成签到 ,获得积分20
11秒前
繁星完成签到 ,获得积分10
12秒前
燕窝窝发布了新的文献求助10
13秒前
14秒前
青年才俊发布了新的文献求助50
14秒前
14秒前
14秒前
rlomened发布了新的文献求助10
14秒前
mm完成签到,获得积分10
16秒前
fusheng发布了新的文献求助10
16秒前
SQ发布了新的文献求助10
17秒前
18秒前
小贩发布了新的文献求助10
19秒前
wtt发布了新的文献求助10
19秒前
19秒前
rlomened完成签到,获得积分20
22秒前
nana发布了新的文献求助10
22秒前
爆米花应助WATeam采纳,获得10
25秒前
核桃发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534