A nanocrystal garnet skeleton-derived high-performance composite solid-state electrolyte membrane

材料科学 电解质 复合数 纳米晶 固态 化学工程 复合材料 纳米技术 电极 工程物理 遗传学 生物 工程类 物理化学 化学
作者
Lihan Chen,Xianzhun Huang,Ruotong Ma,Wenyi Xiang,Jian Ma,Yueyue Wu,Yang Ding,Chengwei Wang,Weiwei Ping,Hongfa Xiang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:65: 103140-103140 被引量:20
标识
DOI:10.1016/j.ensm.2023.103140
摘要

Composite solid-state electrolytes (SSEs) can improve the flexibility of the oxide SSEs to decrease the interfacial resistance between the electrolytes and the electrodes. However, the ceramic nanofillers within the composite SSEs suffer from the agglomeration at high concentrations, decreasing the ion conductivities. In this study, a continuous nanocrystal Li6.5La3Zr1.5Ta0.5O12 (LLZTO) skeleton is prepared by the ultrafast high-temperature sintering (UHS) together with tape-casting. Due to the short sintering time of ∼5 s from precursors, the LLZTO grains are restrained to ∼300 nm with limited Li loss. Even with trace solvent (3 wt%), the composite SSE membrane exhibits an ion conductivity of 5 × 10−4 S⋅cm−1, ∼50 times higher than the DOL electrolyte (1 × 10−5 S⋅cm−1, 8 wt% solvent), which further proves the high Li-ion conductivity of the nanocrystal LLZTO skeleton. The composite SSE membrane exhibits a critical current density of 3.4 mA⋅cm−2, among the highest reported values for ceramic-polymer SSEs. The Li/composite SSEs/Li symmetric cells can cycle ∼ 120 h at the current density from 0.2 to 0.4 mA⋅cm−2. The LiFePO4/LLZTO-PEGDA composite SSEs/Li full cell exhibits a high specific discharge capacity of ∼150 mAh⋅g−1 for 50 cycles with a Coulombic efficiency of ∼ 97%. To explore the processability of the membrane with large size, we also demonstrate a pouch cell (2 cm × 5 cm) with a high specific capacity of ∼150 mAh⋅g−1 for ∼25 cycles and a capacity retention of ∼ 94.5%. This work paves a new way to manufacture the nanocrystal ceramic SSE skeleton for high energy density all-solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZOLEI完成签到,获得积分10
1秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
科研通AI6应助无情飞薇采纳,获得10
4秒前
A琳完成签到,获得积分20
5秒前
科研巨额发布了新的文献求助10
5秒前
善学以致用应助小灰灰采纳,获得10
5秒前
jcx发布了新的文献求助10
6秒前
芽芽鸭完成签到 ,获得积分10
6秒前
Dandelion完成签到,获得积分10
8秒前
魏猛完成签到,获得积分10
8秒前
太空发布了新的文献求助10
8秒前
SciGPT应助guojingjing采纳,获得10
9秒前
紫婧完成签到,获得积分10
9秒前
Azur1完成签到 ,获得积分10
9秒前
吴天姿发布了新的文献求助200
9秒前
忐忑的红牛完成签到,获得积分10
9秒前
erhui发布了新的文献求助10
9秒前
yly完成签到 ,获得积分10
9秒前
小曹完成签到,获得积分10
10秒前
seattle发布了新的文献求助10
10秒前
科研巨额完成签到,获得积分10
10秒前
xupt唐僧完成签到,获得积分10
10秒前
houl发布了新的文献求助10
11秒前
科研志发布了新的文献求助20
12秒前
13秒前
研友_ndv5j8完成签到,获得积分10
13秒前
苹什么应助白昼の月采纳,获得10
14秒前
15秒前
太空完成签到,获得积分10
15秒前
16秒前
leemiii完成签到 ,获得积分10
17秒前
17秒前
17秒前
纪你巴发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
zhuzhu发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812