A Two-Stream Stacked Autoencoder With Inter-Class Separability for Bilinear Hyperspectral Unmixing

高光谱成像 自编码 双线性插值 人工智能 计算机科学 班级(哲学) 计算机视觉 模式识别(心理学) 遥感 地质学 人工神经网络
作者
Chunhong Cao,Wei Song,Han Xiang,YI Hong-bo,Fen Xiao,Xieping Gao
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 357-371
标识
DOI:10.1109/tci.2024.3369410
摘要

Deep learning-based hyperspectral unmixing (HU) is getting increasing attention in the field of remote sensing, aiming at endmember extraction and abundance estimation at pixel scale. However, many existing deep learning-based unmixing methods base on linear mixing models, neglecting complex nonlinear light scattering interactions. Furthermore, these methods often treat all spectral bands indiscriminately, ignoring characteristic differences between endmembers, hampering endmember separation. To address these issues, we present BU-Net, a novel approach for HU based on the generalized bilinear mixing model (GBM), which is a two-stream stacked autoencoder architecture designed to enhance inter-class separability. In the encoder, we employ 3D convolutions with multiple receptive field to extract multiscale spatial and spectral features simultaneously. Additionally, we design a novel band selection based on inter-class separability (BSICS), which identifies bands with inter-class separability (BICS) and the obtained bands are taken as an additional stream for improving performance. In the decoder, BU-Net develops a two-stream structure encompassing linear and bilinear elements, aligning with the theoretical components and constraints of GBM. To further enhance separability between endmembers during training, we use the spectral angle distance between BICS and its reconstruction as a loss regularization term. Moreover, we utilize materials' representative pixels obtained in the process of BSICS to initialize endmembers, which offers effective guidance for modeling the spectral properties. Experimental results on synthetic and real hyperspectral datasets show that our method outperforms state-of-the-art methods. This novel approach addresses limitations of linear mixing models while leveraging deep learning to improve accuracy of HU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻夜山完成签到,获得积分10
刚刚
丙队长发布了新的文献求助10
1秒前
Sakura发布了新的文献求助10
1秒前
2秒前
2秒前
王艺欣发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
逻辑猫完成签到,获得积分10
3秒前
3秒前
PhD发布了新的文献求助10
3秒前
那时花开应助柠檬采纳,获得10
4秒前
4秒前
Yinzixin完成签到,获得积分10
4秒前
4秒前
5秒前
落后蓝天完成签到,获得积分10
5秒前
5秒前
FashionBoy应助孙博采纳,获得10
5秒前
潇洒凡柔发布了新的文献求助10
5秒前
Xiao_Fu发布了新的文献求助10
6秒前
胡英俊完成签到,获得积分10
6秒前
博士发布了新的文献求助10
6秒前
单身的翠容完成签到,获得积分10
6秒前
kryie完成签到,获得积分10
6秒前
科目三应助七一同学采纳,获得10
6秒前
7秒前
Lucas应助二狗子采纳,获得10
7秒前
Yaaaaaa发布了新的文献求助10
7秒前
万事喜完成签到,获得积分10
8秒前
724发布了新的文献求助10
8秒前
9秒前
9秒前
丘比特应助兔子吃胡萝卜采纳,获得10
9秒前
9秒前
上官若男应助学时习采纳,获得10
9秒前
花青关注了科研通微信公众号
9秒前
开放雪珊发布了新的文献求助10
9秒前
重要问丝完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277