A Two-Stream Stacked Autoencoder With Inter-Class Separability for Bilinear Hyperspectral Unmixing

高光谱成像 自编码 双线性插值 人工智能 计算机科学 班级(哲学) 计算机视觉 模式识别(心理学) 遥感 地质学 人工神经网络
作者
Chunhong Cao,Wei Song,Han Xiang,YI Hong-bo,Fen Xiao,Xieping Gao
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 357-371
标识
DOI:10.1109/tci.2024.3369410
摘要

Deep learning-based hyperspectral unmixing (HU) is getting increasing attention in the field of remote sensing, aiming at endmember extraction and abundance estimation at pixel scale. However, many existing deep learning-based unmixing methods base on linear mixing models, neglecting complex nonlinear light scattering interactions. Furthermore, these methods often treat all spectral bands indiscriminately, ignoring characteristic differences between endmembers, hampering endmember separation. To address these issues, we present BU-Net, a novel approach for HU based on the generalized bilinear mixing model (GBM), which is a two-stream stacked autoencoder architecture designed to enhance inter-class separability. In the encoder, we employ 3D convolutions with multiple receptive field to extract multiscale spatial and spectral features simultaneously. Additionally, we design a novel band selection based on inter-class separability (BSICS), which identifies bands with inter-class separability (BICS) and the obtained bands are taken as an additional stream for improving performance. In the decoder, BU-Net develops a two-stream structure encompassing linear and bilinear elements, aligning with the theoretical components and constraints of GBM. To further enhance separability between endmembers during training, we use the spectral angle distance between BICS and its reconstruction as a loss regularization term. Moreover, we utilize materials' representative pixels obtained in the process of BSICS to initialize endmembers, which offers effective guidance for modeling the spectral properties. Experimental results on synthetic and real hyperspectral datasets show that our method outperforms state-of-the-art methods. This novel approach addresses limitations of linear mixing models while leveraging deep learning to improve accuracy of HU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mark完成签到,获得积分10
1秒前
3秒前
彭于晏应助银河打工人采纳,获得10
3秒前
Dasha完成签到,获得积分10
3秒前
果实发布了新的文献求助10
4秒前
CipherSage应助something采纳,获得10
5秒前
6秒前
ELend完成签到,获得积分10
6秒前
7秒前
欧阳发布了新的文献求助10
7秒前
潼熙甄完成签到 ,获得积分10
7秒前
7秒前
9秒前
9秒前
10秒前
漾漾发布了新的文献求助10
10秒前
qiuqiu完成签到 ,获得积分10
10秒前
tubby发布了新的文献求助10
12秒前
12秒前
12秒前
颜又菱发布了新的文献求助10
14秒前
15秒前
汉堡包应助漾漾采纳,获得10
15秒前
z_king_d_23发布了新的文献求助10
15秒前
舒淇发布了新的文献求助10
16秒前
99完成签到,获得积分10
16秒前
热心市民小红花应助博修采纳,获得10
16秒前
17秒前
研友_LpAljn完成签到,获得积分10
17秒前
李健应助何垠禹采纳,获得30
18秒前
芽芽豆完成签到 ,获得积分10
19秒前
19秒前
沧笙踏歌应助司徒无剑采纳,获得10
20秒前
情怀应助z_king_d_23采纳,获得10
20秒前
zhang发布了新的文献求助10
21秒前
暗哑行于秋完成签到 ,获得积分10
21秒前
漾漾完成签到,获得积分10
21秒前
22秒前
shepherd发布了新的文献求助10
23秒前
大个应助魔幻勒采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149