已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Two-Stream Stacked Autoencoder With Inter-Class Separability for Bilinear Hyperspectral Unmixing

高光谱成像 自编码 双线性插值 人工智能 计算机科学 班级(哲学) 计算机视觉 模式识别(心理学) 遥感 地质学 人工神经网络
作者
Chunhong Cao,Wei Song,Han Xiang,YI Hong-bo,Fen Xiao,Xieping Gao
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 357-371
标识
DOI:10.1109/tci.2024.3369410
摘要

Deep learning-based hyperspectral unmixing (HU) is getting increasing attention in the field of remote sensing, aiming at endmember extraction and abundance estimation at pixel scale. However, many existing deep learning-based unmixing methods base on linear mixing models, neglecting complex nonlinear light scattering interactions. Furthermore, these methods often treat all spectral bands indiscriminately, ignoring characteristic differences between endmembers, hampering endmember separation. To address these issues, we present BU-Net, a novel approach for HU based on the generalized bilinear mixing model (GBM), which is a two-stream stacked autoencoder architecture designed to enhance inter-class separability. In the encoder, we employ 3D convolutions with multiple receptive field to extract multiscale spatial and spectral features simultaneously. Additionally, we design a novel band selection based on inter-class separability (BSICS), which identifies bands with inter-class separability (BICS) and the obtained bands are taken as an additional stream for improving performance. In the decoder, BU-Net develops a two-stream structure encompassing linear and bilinear elements, aligning with the theoretical components and constraints of GBM. To further enhance separability between endmembers during training, we use the spectral angle distance between BICS and its reconstruction as a loss regularization term. Moreover, we utilize materials' representative pixels obtained in the process of BSICS to initialize endmembers, which offers effective guidance for modeling the spectral properties. Experimental results on synthetic and real hyperspectral datasets show that our method outperforms state-of-the-art methods. This novel approach addresses limitations of linear mixing models while leveraging deep learning to improve accuracy of HU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
观自在完成签到,获得积分10
5秒前
5秒前
微笑的铸海完成签到 ,获得积分10
5秒前
阿菜完成签到,获得积分10
7秒前
tracey完成签到 ,获得积分10
9秒前
Artin完成签到,获得积分10
9秒前
搜集达人应助嘎嘎的鸡神采纳,获得10
10秒前
王某人完成签到 ,获得积分10
11秒前
寻道图强应助Ji采纳,获得30
14秒前
kento完成签到,获得积分0
17秒前
由怜雪完成签到,获得积分10
21秒前
21秒前
边曦完成签到 ,获得积分10
22秒前
爱学习完成签到,获得积分10
23秒前
18-Crown-6完成签到 ,获得积分10
26秒前
28秒前
35秒前
脑洞疼应助lvsehx采纳,获得10
39秒前
Sirene发布了新的文献求助10
41秒前
41秒前
42秒前
42秒前
Dr-张显华完成签到,获得积分10
43秒前
Dr-张显华发布了新的文献求助10
46秒前
外向思松发布了新的文献求助30
46秒前
yyy完成签到 ,获得积分10
46秒前
修水县1个科研人完成签到 ,获得积分10
47秒前
善良安南发布了新的文献求助10
47秒前
Sirene完成签到,获得积分20
48秒前
51秒前
51秒前
53秒前
lvsehx发布了新的文献求助10
57秒前
58秒前
58秒前
刘隶发布了新的文献求助10
1分钟前
1分钟前
1分钟前
org发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171412
求助须知:如何正确求助?哪些是违规求助? 2822368
关于积分的说明 7938871
捐赠科研通 2482850
什么是DOI,文献DOI怎么找? 1322830
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627