A Two-Stream Stacked Autoencoder With Inter-Class Separability for Bilinear Hyperspectral Unmixing

高光谱成像 自编码 双线性插值 人工智能 计算机科学 班级(哲学) 计算机视觉 模式识别(心理学) 遥感 地质学 人工神经网络
作者
Chunhong Cao,Wei Song,Han Xiang,YI Hong-bo,Fen Xiao,Xieping Gao
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 357-371
标识
DOI:10.1109/tci.2024.3369410
摘要

Deep learning-based hyperspectral unmixing (HU) is getting increasing attention in the field of remote sensing, aiming at endmember extraction and abundance estimation at pixel scale. However, many existing deep learning-based unmixing methods base on linear mixing models, neglecting complex nonlinear light scattering interactions. Furthermore, these methods often treat all spectral bands indiscriminately, ignoring characteristic differences between endmembers, hampering endmember separation. To address these issues, we present BU-Net, a novel approach for HU based on the generalized bilinear mixing model (GBM), which is a two-stream stacked autoencoder architecture designed to enhance inter-class separability. In the encoder, we employ 3D convolutions with multiple receptive field to extract multiscale spatial and spectral features simultaneously. Additionally, we design a novel band selection based on inter-class separability (BSICS), which identifies bands with inter-class separability (BICS) and the obtained bands are taken as an additional stream for improving performance. In the decoder, BU-Net develops a two-stream structure encompassing linear and bilinear elements, aligning with the theoretical components and constraints of GBM. To further enhance separability between endmembers during training, we use the spectral angle distance between BICS and its reconstruction as a loss regularization term. Moreover, we utilize materials' representative pixels obtained in the process of BSICS to initialize endmembers, which offers effective guidance for modeling the spectral properties. Experimental results on synthetic and real hyperspectral datasets show that our method outperforms state-of-the-art methods. This novel approach addresses limitations of linear mixing models while leveraging deep learning to improve accuracy of HU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大宝发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI5应助LILI采纳,获得10
1秒前
CipherSage应助ll采纳,获得10
1秒前
BIKO应助ll采纳,获得10
1秒前
十八完成签到 ,获得积分10
2秒前
papa完成签到,获得积分10
2秒前
3秒前
小二郎应助耿耿采纳,获得10
3秒前
dyy123发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
周亚男完成签到,获得积分10
4秒前
4秒前
搜集达人应助吉祥采纳,获得10
4秒前
无极微光应助HY采纳,获得20
4秒前
能干寻芹完成签到,获得积分10
5秒前
HAN发布了新的文献求助10
6秒前
浮游应助告元采纳,获得10
6秒前
静静发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
yy完成签到,获得积分10
7秒前
7秒前
默默的微笑完成签到,获得积分10
7秒前
9秒前
9秒前
科研通AI6应助波恰采纳,获得10
9秒前
林林林完成签到,获得积分10
9秒前
土豆不吃鱼完成签到,获得积分20
10秒前
时光静好应助归尘采纳,获得10
10秒前
辛勤的刺猬完成签到 ,获得积分10
10秒前
迷人的天抒完成签到 ,获得积分10
10秒前
传奇3应助waoller1采纳,获得10
11秒前
yzz完成签到,获得积分10
11秒前
11秒前
123完成签到,获得积分20
12秒前
yy发布了新的文献求助10
13秒前
花七童完成签到,获得积分10
13秒前
14秒前
林林林发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941797
求助须知:如何正确求助?哪些是违规求助? 4207663
关于积分的说明 13078817
捐赠科研通 3986706
什么是DOI,文献DOI怎么找? 2182648
邀请新用户注册赠送积分活动 1198336
关于科研通互助平台的介绍 1110591