A Two-Stream Stacked Autoencoder With Inter-Class Separability for Bilinear Hyperspectral Unmixing

高光谱成像 自编码 双线性插值 人工智能 计算机科学 班级(哲学) 计算机视觉 模式识别(心理学) 遥感 地质学 人工神经网络
作者
Chunhong Cao,Wei Song,Han Xiang,YI Hong-bo,Fen Xiao,Xieping Gao
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 357-371
标识
DOI:10.1109/tci.2024.3369410
摘要

Deep learning-based hyperspectral unmixing (HU) is getting increasing attention in the field of remote sensing, aiming at endmember extraction and abundance estimation at pixel scale. However, many existing deep learning-based unmixing methods base on linear mixing models, neglecting complex nonlinear light scattering interactions. Furthermore, these methods often treat all spectral bands indiscriminately, ignoring characteristic differences between endmembers, hampering endmember separation. To address these issues, we present BU-Net, a novel approach for HU based on the generalized bilinear mixing model (GBM), which is a two-stream stacked autoencoder architecture designed to enhance inter-class separability. In the encoder, we employ 3D convolutions with multiple receptive field to extract multiscale spatial and spectral features simultaneously. Additionally, we design a novel band selection based on inter-class separability (BSICS), which identifies bands with inter-class separability (BICS) and the obtained bands are taken as an additional stream for improving performance. In the decoder, BU-Net develops a two-stream structure encompassing linear and bilinear elements, aligning with the theoretical components and constraints of GBM. To further enhance separability between endmembers during training, we use the spectral angle distance between BICS and its reconstruction as a loss regularization term. Moreover, we utilize materials' representative pixels obtained in the process of BSICS to initialize endmembers, which offers effective guidance for modeling the spectral properties. Experimental results on synthetic and real hyperspectral datasets show that our method outperforms state-of-the-art methods. This novel approach addresses limitations of linear mixing models while leveraging deep learning to improve accuracy of HU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷云朵完成签到,获得积分10
1秒前
爱lx完成签到,获得积分10
2秒前
醉熏的井完成签到,获得积分10
3秒前
科研通AI2S应助张弼玥采纳,获得30
4秒前
默默的青旋完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Lucas应助沈云川采纳,获得10
5秒前
6秒前
7秒前
科目三应助火星上安筠采纳,获得10
7秒前
醉熏的井发布了新的文献求助20
8秒前
10秒前
光亮的健柏完成签到,获得积分20
11秒前
慕青应助CALM采纳,获得10
11秒前
12秒前
狂野静曼完成签到,获得积分10
13秒前
13秒前
nn发布了新的文献求助10
14秒前
小小发布了新的文献求助10
14秒前
15秒前
17秒前
Gouki完成签到 ,获得积分10
17秒前
彭于晏应助小静采纳,获得30
20秒前
20秒前
21秒前
研友_VZG7GZ应助谢嘻嘻嘻嘻采纳,获得10
21秒前
22秒前
李爱国应助科研通管家采纳,获得30
22秒前
斯文败类应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得30
23秒前
嘿嘿应助科研通管家采纳,获得10
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得30
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602790
求助须知:如何正确求助?哪些是违规求助? 4687992
关于积分的说明 14851935
捐赠科研通 4685938
什么是DOI,文献DOI怎么找? 2540226
邀请新用户注册赠送积分活动 1506857
关于科研通互助平台的介绍 1471450