亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Two-Stream Stacked Autoencoder With Inter-Class Separability for Bilinear Hyperspectral Unmixing

高光谱成像 自编码 双线性插值 人工智能 计算机科学 班级(哲学) 计算机视觉 模式识别(心理学) 遥感 地质学 人工神经网络
作者
Chunhong Cao,Wei Song,Han Xiang,YI Hong-bo,Fen Xiao,Xieping Gao
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 357-371
标识
DOI:10.1109/tci.2024.3369410
摘要

Deep learning-based hyperspectral unmixing (HU) is getting increasing attention in the field of remote sensing, aiming at endmember extraction and abundance estimation at pixel scale. However, many existing deep learning-based unmixing methods base on linear mixing models, neglecting complex nonlinear light scattering interactions. Furthermore, these methods often treat all spectral bands indiscriminately, ignoring characteristic differences between endmembers, hampering endmember separation. To address these issues, we present BU-Net, a novel approach for HU based on the generalized bilinear mixing model (GBM), which is a two-stream stacked autoencoder architecture designed to enhance inter-class separability. In the encoder, we employ 3D convolutions with multiple receptive field to extract multiscale spatial and spectral features simultaneously. Additionally, we design a novel band selection based on inter-class separability (BSICS), which identifies bands with inter-class separability (BICS) and the obtained bands are taken as an additional stream for improving performance. In the decoder, BU-Net develops a two-stream structure encompassing linear and bilinear elements, aligning with the theoretical components and constraints of GBM. To further enhance separability between endmembers during training, we use the spectral angle distance between BICS and its reconstruction as a loss regularization term. Moreover, we utilize materials' representative pixels obtained in the process of BSICS to initialize endmembers, which offers effective guidance for modeling the spectral properties. Experimental results on synthetic and real hyperspectral datasets show that our method outperforms state-of-the-art methods. This novel approach addresses limitations of linear mixing models while leveraging deep learning to improve accuracy of HU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
9秒前
清爽冬莲完成签到 ,获得积分0
21秒前
23秒前
dmmmm0903完成签到,获得积分10
38秒前
乐观生活完成签到,获得积分10
40秒前
40秒前
as完成签到,获得积分10
43秒前
Ava应助柏风华采纳,获得10
43秒前
乐观生活发布了新的文献求助10
46秒前
duan完成签到 ,获得积分10
50秒前
51秒前
1分钟前
Akim应助盛夏如花采纳,获得30
1分钟前
执着亿先发布了新的文献求助10
1分钟前
李佳怡发布了新的文献求助10
1分钟前
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
可爱邓邓完成签到 ,获得积分10
1分钟前
又声完成签到,获得积分10
1分钟前
whoknowsname完成签到,获得积分10
1分钟前
1分钟前
好看的花花鱼完成签到 ,获得积分10
1分钟前
1分钟前
咔咔完成签到,获得积分10
1分钟前
柏风华发布了新的文献求助10
1分钟前
尾状叶完成签到 ,获得积分10
1分钟前
HD发布了新的文献求助10
1分钟前
柏风华完成签到,获得积分10
1分钟前
1分钟前
h0jian09完成签到,获得积分10
1分钟前
Re完成签到 ,获得积分10
1分钟前
1分钟前
粽子完成签到,获得积分10
1分钟前
盛夏如花发布了新的文献求助30
1分钟前
EternalStrider完成签到,获得积分10
2分钟前
颢懿完成签到 ,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657891
求助须知:如何正确求助?哪些是违规求助? 4813480
关于积分的说明 15080529
捐赠科研通 4816091
什么是DOI,文献DOI怎么找? 2577100
邀请新用户注册赠送积分活动 1532119
关于科研通互助平台的介绍 1490669