Identification and the molecular mechanism of novel duck liver-derived anti-inflammatory peptides in LPS-induced RAW 264.7 cell model

机制(生物学) 鉴定(生物学) 化学 计算生物学 生物 物理 生态学 量子力学
作者
Xiankang Fan,Laidi Zhang,Yangying Sun,Changyu Zhou,Qiang Xia,Lihui Du,Zhen Wu,Daodong Pan
标识
DOI:10.26599/fshw.2023.9250041
摘要

In this study, 10 novel anti-inflammatory peptides were identified from duck liver, and their molecular mechanism was demonstrated based on machine learning and molecular docking. Using Sephadex G-15 gel chromatography separation, reversed-phase high-performance liquid chromatography purification, liquid chromatography-tandem mass spectrometry identification, and Biopep database comparison, 10 novel anti-inflammatory peptides were initially found. Their splendid ACE inhibition and anti-inflammatory properties were confirmed by machine learning. With binding energies less than -5.0 kcal/mol, molecular docking revealed that they could efficiently bind to the active pockets of TNF-, IL-6, COX-2, and NF-B proteins with efficiency, indicating that the compounds can spontaneously form complexes through hydrogen bonding and hydrophobic interactions with the protein binding pockets. In the LPS-induced RAW 264.7 cell model, the release of NO, TNF-α, and IL-6 and the mRNA expression of inflammatory factors (TNF-α, IL-6, COX-2, and NF-κB) were significantly inhibited by these peptides. We concluded it might be due to their anti-inflammatory effects by inhibiting the protein phosphorylation of IκBα in the cytoplasm and preventing the translocation of NF-κB p65 in the cytoplasm to the nucleus, thereby regulating the NF-κB signaling pathway. This study is essential for the screening of anti-inflammatory peptides and the investigation of the mechanism of action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤泽琪发布了新的文献求助10
刚刚
刚刚
顾矜应助一枝安采纳,获得10
1秒前
希望天下0贩的0应助星空采纳,获得10
1秒前
1秒前
Geminiwod完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
ZZY发布了新的文献求助10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得30
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
522发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
bkagyin应助高文雅采纳,获得10
4秒前
4秒前
默默曼安发布了新的文献求助10
5秒前
慕青应助hz采纳,获得10
5秒前
Hello应助牛马研究生采纳,获得10
6秒前
见微完成签到,获得积分10
6秒前
tianshicanyi发布了新的文献求助10
7秒前
琛哥物理完成签到,获得积分10
7秒前
杨枝甘露发布了新的文献求助10
8秒前
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079