Identification and the molecular mechanism of novel duck liver-derived anti-inflammatory peptides in LPS-induced RAW 264.7 cell model

机制(生物学) 鉴定(生物学) 化学 计算生物学 生物 物理 生态学 量子力学
作者
Xiankang Fan,Laidi Zhang,Yangying Sun,Changyu Zhou,Qiang Xia,Lihui Du,Zhen Wu,Daodong Pan
标识
DOI:10.26599/fshw.2023.9250041
摘要

In this study, 10 novel anti-inflammatory peptides were identified from duck liver, and their molecular mechanism was demonstrated based on machine learning and molecular docking. Using Sephadex G-15 gel chromatography separation, reversed-phase high-performance liquid chromatography purification, liquid chromatography-tandem mass spectrometry identification, and Biopep database comparison, 10 novel anti-inflammatory peptides were initially found. Their splendid ACE inhibition and anti-inflammatory properties were confirmed by machine learning. With binding energies less than -5.0 kcal/mol, molecular docking revealed that they could efficiently bind to the active pockets of TNF-, IL-6, COX-2, and NF-B proteins with efficiency, indicating that the compounds can spontaneously form complexes through hydrogen bonding and hydrophobic interactions with the protein binding pockets. In the LPS-induced RAW 264.7 cell model, the release of NO, TNF-α, and IL-6 and the mRNA expression of inflammatory factors (TNF-α, IL-6, COX-2, and NF-κB) were significantly inhibited by these peptides. We concluded it might be due to their anti-inflammatory effects by inhibiting the protein phosphorylation of IκBα in the cytoplasm and preventing the translocation of NF-κB p65 in the cytoplasm to the nucleus, thereby regulating the NF-κB signaling pathway. This study is essential for the screening of anti-inflammatory peptides and the investigation of the mechanism of action.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助黄尔法采纳,获得10
刚刚
xbf发布了新的文献求助30
刚刚
++发布了新的文献求助30
刚刚
一枚研究僧应助Curry采纳,获得50
1秒前
可爱敏敏杨完成签到,获得积分10
1秒前
cctv18应助如意的向彤采纳,获得10
2秒前
山雨完成签到,获得积分10
2秒前
至黎发布了新的文献求助10
2秒前
3秒前
山水之乐发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
jin完成签到,获得积分10
4秒前
4秒前
hy完成签到 ,获得积分10
6秒前
带头大哥给杳鸢的求助进行了留言
6秒前
CodeCraft应助xzy采纳,获得10
6秒前
7秒前
jl发布了新的文献求助10
7秒前
至黎完成签到,获得积分10
8秒前
infinity完成签到 ,获得积分10
8秒前
葡萄成熟时完成签到 ,获得积分20
8秒前
yyjw完成签到,获得积分10
9秒前
八戒的梦想完成签到,获得积分10
10秒前
11秒前
11秒前
斯文败类应助FG采纳,获得10
12秒前
jl完成签到,获得积分10
13秒前
早期早睡发布了新的文献求助10
13秒前
今后应助科研狗采纳,获得10
13秒前
14秒前
Ternura发布了新的文献求助10
15秒前
15秒前
独特四娘发布了新的文献求助10
16秒前
复尔尔发布了新的文献求助10
17秒前
爆米花应助坦率的棉花糖采纳,获得10
17秒前
仁爱的乐枫完成签到,获得积分10
18秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247794
求助须知:如何正确求助?哪些是违规求助? 2891053
关于积分的说明 8265876
捐赠科研通 2559283
什么是DOI,文献DOI怎么找? 1388075
科研通“疑难数据库(出版商)”最低求助积分说明 650683
邀请新用户注册赠送积分活动 627577