上睑下垂
粒体自噬
免疫印迹
小发夹RNA
细胞生物学
基因沉默
分子生物学
化学
生物
受体
自噬
炎症体
细胞凋亡
基因敲除
基因
生物化学
作者
Zhongyang Hong,Han Wang,Tianjing Zhang,Li Xu,Yuanfang Zhai,Xianzheng Zhang,Feng Zhang,Lingling Zhang
标识
DOI:10.1016/j.intimp.2023.111378
摘要
Synovial hypoxia, a critical pathological characteristic of rheumatoid arthritis (RA), significantly contributes to synovitis and synovial hyperplasia. In response to hypoxic conditions, fibroblast-like synoviocytes (FLS) undergo adaptive changes involving gene expression modulation, with hypoxia-inducible factors (HIF) playing a pivotal role. The regulation of BCL2/adenovirus e1B 19 kDa protein interacting protein 3 (BNIP3) and nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3) expression has been demonstrated to be regulated by HIF-1. The objective of this study was to examine the molecular mechanism that contributes to the aberrant activation of FLS in response to hypoxia. Specifically, the interaction between BNIP3-mediated mitophagy and NLRP3-mediated pyroptosis was conjointly highlighted. The research methodology employed Western blot and immunohistochemistry techniques to identify the occurrence of mitophagy in synovial tissue affected by RA. Additionally, the levels of mitophagy under hypoxic conditions were assessed using Western blot, immunofluorescence, quantitative polymerase chain reaction (qPCR), and CUT&Tag assays. Pyroptosis was observed through electron microscopy, fluorescence microscopy, and Western blot analysis. Furthermore, the quantity of reactive oxygen species (ROS) was measured. The silencing of HIF-1α and BNIP3 was achieved through the transfection of short hairpin RNA (shRNA) into cells. In the present study, a noteworthy increase in the expression of BNIP3 and LC3B was observed in the synovial tissue of patients with RA. Upon exposure to hypoxia, FLS of RA exhibited BNIP3-mediated mitophagy and NLRP3 inflammasome-mediated pyroptosis. It appears that hypoxia regulates the expression of BNIP3 and NLRP3 through the transcription factor HIF-1. Additionally, the activation of mitophagy has been observed to effectively inhibit hypoxia-induced pyroptosis by reducing the intracellular levels of ROS. Conclusion: In summary, the activation of FLS in RA patients under hypoxic conditions involves both BNIP3-mediated mitophagy and NLRP3 inflammasome-mediated pyroptosis. Additionally, mitophagy can suppress hypoxia-induced FLS pyroptosis by eliminating ROS and inhibiting the HIF-1α/NLRP3 pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI