Event causality identification via structure optimization and reinforcement learning

计算机科学 人工智能 生成模型 强化学习 事件(粒子物理) 机器学习 依赖关系(UML) 鉴定(生物学) 生成语法 水准点(测量) 任务(项目管理) 因果关系(物理学) 物理 植物 管理 大地测量学 量子力学 经济 生物 地理
作者
Mingliang Chen,Wenzhong Yang,Fuyuan Wei,Qicai Dai,Mingjie Qiu,Chunyun Fu,Mo Sha
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111256-111256
标识
DOI:10.1016/j.knosys.2023.111256
摘要

Event causality identification (ECI) aims to identify possible causal relationships between event-mention pairs in a text. In the past, ECI models mainly used classification frameworks and rarely used generative models to solve this task. Although some progress has been made, the existing approaches suffer from the following two problems: (1) In the generative approach of inter-event mention dependency paths, noise and unnecessary sentence components cannot be effectively reduced, thus limiting the ability of the model to capture the critical correlation knowledge between event mentions; and (2) Existing multi-task generative model training which uses the REINFORCE algorithm suffers from a high-variance problem that imposes limitations on capturing critical causal knowledge. Therefore, we propose a novel Structural Optimization strategy Reinforcement Learning algorithm Generation model, GenSORL. The model aims to generate causal relationships from input sentences and includes dependency path generation as a complementary task to improve the causal label prediction performance. Specifically, this approach utilizes a new dependency syntax strategy to optimize dependency-path generation and extract important ECI contextual words between event mentions. Regarding the high-variance problem, a policy gradient with baseline is proposed for training the generative model, further adopting an innovative reward function to measure the accuracy of causal prediction and generation quality. In experiments using two frequently used benchmark datasets, the proposed method outperformed state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwerty发布了新的文献求助50
刚刚
SADD发布了新的文献求助10
刚刚
领导范儿应助西子阳采纳,获得10
刚刚
张建路发布了新的文献求助20
刚刚
汉堡包应助西子阳采纳,获得10
刚刚
李健的小迷弟应助西子阳采纳,获得10
1秒前
yyd发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
迅速的映冬关注了科研通微信公众号
4秒前
Candice完成签到,获得积分10
6秒前
JiangyingYu发布了新的文献求助50
7秒前
理想完成签到,获得积分20
7秒前
cardiology完成签到,获得积分10
7秒前
7秒前
Xu完成签到,获得积分10
8秒前
彭于晏应助彤彤采纳,获得10
8秒前
8秒前
科研通AI5应助饭饭看文献采纳,获得10
8秒前
干饭虫应助quasar采纳,获得20
9秒前
9秒前
CBLLBC发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
浮游应助arrebol采纳,获得10
12秒前
13秒前
哈基米德应助uduki采纳,获得10
13秒前
许健发布了新的文献求助10
14秒前
14秒前
14秒前
cardiology发布了新的文献求助10
14秒前
乐乐应助zz采纳,获得10
15秒前
浮游应助lql采纳,获得10
15秒前
15秒前
Cathy完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助30
17秒前
17秒前
冷酷雪碧发布了新的文献求助20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089228
求助须知:如何正确求助?哪些是违规求助? 4304013
关于积分的说明 13413247
捐赠科研通 4129680
什么是DOI,文献DOI怎么找? 2261670
邀请新用户注册赠送积分活动 1265742
关于科研通互助平台的介绍 1200344