Wrinkle Structure Regulating Electromagnetic Parameters in Constructed Core‐shell ZnFe2O4@PPy Microspheres as Absorption Materials

材料科学 反射损耗 复合材料 柯肯德尔效应 复合数 聚吡咯 介电损耗 吸收(声学) 电介质 原位聚合 电导率 化学工程 聚合 光电子学 聚合物 冶金 物理化学 化学 工程类
作者
Zhuolin Li,Hao Zhu,Longjun Rao,Mengqiu Huang,Yuetong Qian,Lei Wang,Yongsheng Liu,Jincang Zhang,Yuxiang Lai,Renchao Che
出处
期刊:Small [Wiley]
卷期号:20 (16): e2308581-e2308581 被引量:24
标识
DOI:10.1002/smll.202308581
摘要

Abstract Structure engineering of magnetic‐dielectric multi‐components is emerging as an effective approach for presuming high‐performance electromagnetic (EM) absorption, but still faces bottlenecks due to the ambiguous regulation mechanism of surface morphology. Here, a novel wrinkled surface structure is tailored on the ZnFe 2 O 4 microsphere via a spray‐pyrolysis induced Kirkendall diffusion effect, the conductivity of the sample is affected, and a better impedance matching is adjusted by modulating the concentration of metal nitrate precursors. Driven by a vapor phase polymerization, conductive polypyrrole (PPy) shell are in situ decorated on the ZnFe 2 O 4 microsphere surfaces, ingeniously constructing a core‐shell ZnFe 2 O 4 @PPy composites. Moreover, a systematic investigation reveals that this unique wrinkled surface structure is highly dependent on the metal salt concentration. Optimized wrinkle ZnFe 2 O 4 @PPy composite exhibits a minimum reflection loss (RL min ) reached −41.0 dB and the effective absorption bandwidth (EAB) can cover as wide as 4.1 GHz. The enhanced interfacial polarization originated from high‐density ZnFe 2 O 4 ‐PPy heterostructure, and the conduction loss of PPy contributes to the boosted dielectric loss capability. This study gives a significant guidance for preparing high‐performance EM composites by tailoring the surface wrinkle structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助ning采纳,获得10
1秒前
专注芾发布了新的文献求助10
1秒前
1秒前
1秒前
天天G_发布了新的文献求助10
1秒前
coek发布了新的文献求助10
2秒前
2秒前
酷波er应助葛优采纳,获得10
2秒前
夹夹完成签到,获得积分10
3秒前
Running完成签到 ,获得积分10
3秒前
湿地小怪兽完成签到,获得积分10
3秒前
酷波er应助梦涵采纳,获得10
4秒前
4秒前
源y发布了新的文献求助10
4秒前
4秒前
4秒前
慕青应助鳗鱼鞋垫采纳,获得10
4秒前
4秒前
wwy完成签到,获得积分10
5秒前
南城雨落发布了新的文献求助10
5秒前
5秒前
5秒前
ladyguagua发布了新的文献求助10
5秒前
宗岩完成签到 ,获得积分10
5秒前
6秒前
极度疯狂完成签到,获得积分10
6秒前
183完成签到,获得积分10
6秒前
8秒前
共享精神应助默默幼南采纳,获得10
8秒前
如初完成签到,获得积分10
9秒前
li发布了新的文献求助10
9秒前
香蕉觅云应助雪白的西牛采纳,获得10
9秒前
11秒前
ladyguagua完成签到,获得积分10
11秒前
艺阳完成签到,获得积分10
11秒前
re应助fafafa采纳,获得10
11秒前
思源应助池鲤采纳,获得10
12秒前
田様应助www111采纳,获得10
12秒前
善学以致用应助Franky采纳,获得10
12秒前
夏鸢完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680