杂乱
奇异值分解
计算机科学
人工智能
稳健性(进化)
模式识别(心理学)
成像体模
滤波器(信号处理)
连贯性(哲学赌博策略)
计算机视觉
算法
数学
雷达
物理
光学
统计
基因
电信
生物化学
化学
作者
Liyuan Jiang,Hanbing Chu,Jiabin Yu,Xiaolei Su,Jiacheng Liu,Haitao Wu,Feiqian Wang,Yujin Zong,Mingxi Wan
标识
DOI:10.1088/1361-6560/ad11a2
摘要
Objective. Contrast-free microvascular imaging is clinically valuable for the assessment of physiological status and the early diagnosis of diseases. Effective clutter filtering is essential for microvascular visualization without contrast enhancement. Singular value decomposition (SVD)-based spatiotemporal filter has been widely used to suppress clutter. However, clinical real-time imaging relies on short ensembles (dozens of frames), which limits the implementation of SVD filtering due to the large error of eigen-correlated estimations and high dependence on optimal threshold when used in such ensembles.Approach. To address the above challenges of imaging in short ensembles, two optimized filters of angular domain data are proposed in this paper: grouped angle SVD (GA-SVD) and angular-coherence-based higher-order SVD (AC-HOSVD). GA-SVD applies SVD to the concatenation of all angular data to improve clutter rejection performance in short ensembles, while AC-HOSVD applies HOSVD to the angular data tensor and utilizes angular coherence in addition to spatial and temporal features for filtering. Feasible threshold selection strategies in each feature space are provided. The clutter rejection performance of the proposed filters and SVD was evaluated with Doppler phantom andin vivostudies at different cases. Moreover, the robustness of the filters was explored under wrong singular value threshold estimation, and their computational complexity was studied.Main results. Qualitative and quantitative results indicated that GA-SVD and AC-HOSVD can effectively improve clutter rejection performance in short ensembles, especially AC-HOSVD. Notably, the proposed methods using 20 frames had similar image quality to SVD using 100 frames.In vivostudies showed that compared to SVD, GA-SVD increased the signal-to-noise-ratio (SNR) by 6.03 dB on average, and AC-HOSVD increased the SNR by 8.93 dB on average. Furthermore, AC-HOSVD remained better power Doppler image quality under non-optimal thresholds, followed by GA-SVD.Significance. The proposed filters can greatly enhance contrast-free microvascular visualization in short ensembles and have potential for different clinical translations due to the performance differences.
科研通智能强力驱动
Strongly Powered by AbleSci AI