亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Enhanced Cloud-Edge-Terminal Collaborative Network: Survey, Applications, and Future Directions

计算机科学 云计算 终端(电信) 边缘计算 强化学习 GSM演进的增强数据速率 任务(项目管理) 背景(考古学) 分布式计算 钥匙(锁) 边缘设备 数据科学 人工智能 计算机网络 计算机安全 系统工程 古生物学 工程类 生物 操作系统
作者
Huixian Gu,Liqiang Zhao,Zhu Han,Gan Zheng,Shenghui Song
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 1322-1385 被引量:14
标识
DOI:10.1109/comst.2023.3338153
摘要

The cloud-edge-terminal collaborative network (CETCN) is considered as a novel paradigm for emerging applications owing to its huge potential in providing low-latency and ultra-reliable computing services. However, achieving such benefits is very challenging due to the heterogeneous computing power of terminal devices and the complex environment faced by the CETCN. In particular, the high-dimensional and dynamic environment states cause difficulties for the CETCN to make efficient decisions in terms of task offloading, collaborative caching and mobility management. To this end, artificial intelligence (AI), especially deep reinforcement learning (DRL) has been proven effective in solving sequential decision-making problems in various domains, and offers a promising solution for the above-mentioned issues due to several reasons. Firstly, accurate modelling of the CETCN, which is difficult to obtain for real-world applications, is not required for the DRL-based method. Secondly, DRL can effectively respond to high-dimensional and dynamic tasks through iterative interactions with the environment. Thirdly, due to the complexity of tasks and the differences in resource supply among different vendors, collaboration is required between different vendors to complete tasks. The multi-agent DRL (MADRL) methods are very effective in solving collaborative tasks, where the collaborative tasks can be jointly completed by cloud, edge and terminal devices which provided by different vendors. This survey provides a comprehensive overview regarding the applications of DRL and MADRL in the context of CETCN. The first part of this survey provides a depth overview of the key concepts of the CETCN and the mathematical underpinnings of both DRL and MADRL. Then, we highlight the applications of RL algorithms in solving various challenges within CETCN, such as task offloading, resource allocation, caching and mobility management. In addition, we extend discussion to explore how DRL and MADRL are making inroads into emerging CETCN scenarios like intelligent transportation system (ITS), the industrial Internet of Things (IIoT), smart health and digital agriculture. Furthermore, security considerations related to the application of DRL within CETCN are addressed, along with an overview of existing standards that pertain to edge intelligence. Finally, we list several lessons learned in this evolving field and outline future research opportunities and challenges that are critical for the development of the CETCN. We hope this survey will attract more researchers to investigate scalable and decentralized AI algorithms for the design of CETCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
刚刚
Yuying完成签到 ,获得积分10
4秒前
告非Goffee完成签到,获得积分10
5秒前
16秒前
23秒前
zhuhan发布了新的文献求助10
26秒前
liuerlong完成签到 ,获得积分10
37秒前
41秒前
负责丹亦发布了新的文献求助10
45秒前
47秒前
lwm不想看文献完成签到 ,获得积分10
52秒前
Reybor完成签到,获得积分10
54秒前
1097完成签到 ,获得积分10
55秒前
tyughi完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
zlq完成签到 ,获得积分10
1分钟前
搜集达人应助Arkhamk采纳,获得30
1分钟前
1分钟前
求助完成签到 ,获得积分10
1分钟前
Zjn-完成签到 ,获得积分10
1分钟前
LilyChen完成签到 ,获得积分10
1分钟前
pop完成签到,获得积分10
1分钟前
Arkhamk完成签到,获得积分10
1分钟前
JacekYu完成签到 ,获得积分10
1分钟前
自然完成签到,获得积分10
1分钟前
SciGPT应助爱学习的曼卉采纳,获得10
1分钟前
丫丫完成签到,获得积分10
2分钟前
2分钟前
科研剧中人完成签到,获得积分10
2分钟前
kyfbrahha完成签到 ,获得积分10
2分钟前
yyk完成签到,获得积分10
2分钟前
我是老大应助冷傲人英采纳,获得10
2分钟前
小鱼爱吃肉应助yyk采纳,获得10
2分钟前
wbs13521完成签到,获得积分10
2分钟前
元小夏完成签到,获得积分10
2分钟前
2分钟前
超人不会飞完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314374
求助须知:如何正确求助?哪些是违规求助? 2946617
关于积分的说明 8531095
捐赠科研通 2622350
什么是DOI,文献DOI怎么找? 1434478
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650855