亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nomogram model combined thrombelastography for venous thromboembolism risk in patients undergoing lung cancer surgery

列线图 医学 接收机工作特性 肺癌 逻辑回归 单变量 外科 肿瘤科 内科学 多元统计 统计 数学
作者
Da Qin,Hongfei Cai,Qing Liu,Tianyu Lu,Ze Tang,Yuhang Shang,Youbin Cui,Rui Wang
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fphys.2023.1242132
摘要

Background: The aim of this study was to develop a nomogram model in combination with thromboelastography (TEG) to predict the development of venous thromboembolism (VTE) after lung cancer surgery. Methods: The data of 502 patients who underwent surgical treatment for lung cancer from December 2020 to December 2022 were retrospectively analyzed. Patients were then randomized into training and validation groups. Univariate and multivariate logistic regression analyses were carried out in the training group and independent risk factors were included in the nomogram to construct risk prediction models. The predictive capability of the model was assessed by the consistency index (C-index), receiver operating characteristic curves (ROC), the calibration plot and decision curve analysis (DCA). Results: The nomogram risk prediction model comprised of the following five independent risk factors: age, operation time, forced expiratory volume in one second and postoperative TEG parameters k value(K) and reaction time(R). The nomogram model demonstrated better predictive power than the modified Caprini model, with the C-index being greater. The calibration curve verified the consistency of nomogram between the two groups. Furthermore, DCA demonstrated the clinical value and potential for practical application of the nomogram. Conclusion: This study is the first to combine TEG and clinical risk factors to construct a nomogram to predict the occurrence of VTE in patients after lung cancer surgery. This model provides a simple and user-friendly method to assess the probability of VTE in postoperative lung cancer patients, enabling clinicians to develop individualized preventive anticoagulation strategies to reduce the incidence of such complications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学术垃圾产出完成签到,获得积分10
2秒前
5秒前
冷静新烟发布了新的文献求助10
9秒前
click完成签到 ,获得积分10
12秒前
syalonyui完成签到 ,获得积分10
15秒前
迷路的台灯完成签到 ,获得积分10
22秒前
26秒前
斯文败类应助冷静新烟采纳,获得10
29秒前
扣子完成签到 ,获得积分10
32秒前
酷波er应助忧虑的访梦采纳,获得10
35秒前
白瓜完成签到 ,获得积分10
43秒前
斯文败类应助科研通管家采纳,获得10
56秒前
58秒前
hxhexingdoc发布了新的文献求助10
1分钟前
1分钟前
糖果乖乖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
lonelylong发布了新的文献求助20
1分钟前
1分钟前
hxhexingdoc完成签到,获得积分10
1分钟前
传奇3应助追寻绮玉采纳,获得10
1分钟前
1分钟前
VDC应助Georgechan采纳,获得30
1分钟前
1分钟前
1分钟前
lonelylong完成签到,获得积分10
1分钟前
研友_ZGjaGn发布了新的文献求助10
1分钟前
坦率的丹烟完成签到 ,获得积分10
2分钟前
2分钟前
共享精神应助梦潜采纳,获得10
2分钟前
苑阿宇发布了新的文献求助10
2分钟前
耿耿完成签到 ,获得积分10
2分钟前
tangyimmo完成签到 ,获得积分10
2分钟前
2分钟前
梦潜发布了新的文献求助10
2分钟前
最佳完成签到 ,获得积分10
2分钟前
2分钟前
倷倷完成签到 ,获得积分10
2分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463596
求助须知:如何正确求助?哪些是违规求助? 3057019
关于积分的说明 9054917
捐赠科研通 2746921
什么是DOI,文献DOI怎么找? 1507154
科研通“疑难数据库(出版商)”最低求助积分说明 696405
邀请新用户注册赠送积分活动 695916