清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes

医学 磁共振成像 平滑肌瘤 有效扩散系数 逻辑回归 子宫肌瘤 交叉验证 支持向量机 放射科 人工智能 计算机科学 内科学
作者
Tetsuro Tamehisa,Shun Sato,Takahiro Sakai,Ryo Maekawa,Masahiro Tanabe,Katsuyoshi Ito,Norihiro Sugino
出处
期刊:Obstetrics & Gynecology [Ovid Technologies (Wolters Kluwer)]
卷期号:143 (3): 358-365 被引量:1
标识
DOI:10.1097/aog.0000000000005475
摘要

To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data.This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set.The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes.We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捉迷藏完成签到,获得积分0
2秒前
4秒前
zhuosht完成签到 ,获得积分10
5秒前
hyl-tcm完成签到 ,获得积分10
6秒前
苏苏苏发布了新的文献求助10
9秒前
Yolanda_Xu完成签到 ,获得积分10
12秒前
银河里完成签到 ,获得积分10
12秒前
as完成签到 ,获得积分10
22秒前
fangtong完成签到,获得积分10
23秒前
26秒前
美满的小蘑菇完成签到 ,获得积分10
30秒前
racill完成签到 ,获得积分10
33秒前
40秒前
吃人不眨眼应助章鱼1018采纳,获得20
42秒前
叮当发布了新的文献求助10
47秒前
秀丽的芷珍完成签到 ,获得积分10
49秒前
上官若男应助科研通管家采纳,获得10
56秒前
lanyun00123完成签到 ,获得积分10
57秒前
1分钟前
yhbk发布了新的文献求助10
1分钟前
Harlotte完成签到 ,获得积分10
1分钟前
三杠完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
张平一完成签到 ,获得积分10
1分钟前
花花完成签到 ,获得积分10
1分钟前
1分钟前
zhangwenjie完成签到 ,获得积分10
1分钟前
changfox完成签到,获得积分10
2分钟前
li8888lili8888完成签到 ,获得积分10
2分钟前
柯彦完成签到 ,获得积分10
2分钟前
Hhhhh完成签到 ,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
obedVL完成签到,获得积分10
2分钟前
2分钟前
yuyu877完成签到 ,获得积分10
2分钟前
HY完成签到 ,获得积分10
2分钟前
even完成签到 ,获得积分0
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分0
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450328
求助须知:如何正确求助?哪些是违规求助? 4558115
关于积分的说明 14265472
捐赠科研通 4481565
什么是DOI,文献DOI怎么找? 2454906
邀请新用户注册赠送积分活动 1445669
关于科研通互助平台的介绍 1421642