Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes

医学 磁共振成像 平滑肌瘤 有效扩散系数 逻辑回归 子宫肌瘤 交叉验证 支持向量机 放射科 人工智能 计算机科学 内科学
作者
Tetsuro Tamehisa,Shun Sato,Takahiro Sakai,Ryo Maekawa,Masahiro Tanabe,Katsuyoshi Ito,Norihiro Sugino
出处
期刊:Obstetrics & Gynecology [Lippincott Williams & Wilkins]
卷期号:143 (3): 358-365 被引量:1
标识
DOI:10.1097/aog.0000000000005475
摘要

To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data.This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set.The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes.We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssk完成签到,获得积分10
1秒前
1秒前
kk发布了新的文献求助10
1秒前
1秒前
谨慎的哈密瓜给谨慎的哈密瓜的求助进行了留言
2秒前
meethaha发布了新的文献求助10
3秒前
4秒前
琉璃929完成签到,获得积分10
4秒前
霸气谷蕊完成签到,获得积分10
5秒前
5秒前
万能图书馆应助k1icet采纳,获得10
5秒前
爽歪歪完成签到,获得积分10
5秒前
Ndqq发布了新的文献求助10
5秒前
隐形白亦发布了新的文献求助10
5秒前
6秒前
6秒前
隐形不斜完成签到,获得积分10
6秒前
wangxixi发布了新的文献求助10
7秒前
7秒前
忧虑的鼠标完成签到,获得积分10
8秒前
Bcc完成签到,获得积分10
8秒前
灰色与青完成签到,获得积分10
9秒前
FashionBoy应助嘟嘟嘟采纳,获得10
9秒前
华仔应助琉璃929采纳,获得10
10秒前
慕青应助Myu111111采纳,获得10
10秒前
小二郎应助小王采纳,获得30
10秒前
10秒前
某云完成签到,获得积分10
10秒前
qq发布了新的文献求助10
10秒前
曾经的刺猬完成签到,获得积分10
11秒前
小洪俊熙完成签到,获得积分10
11秒前
斯文败类应助北落采纳,获得10
12秒前
lxx发布了新的文献求助10
12秒前
12秒前
大模型应助DW采纳,获得10
12秒前
苦哈哈发布了新的文献求助10
12秒前
顾矜应助Ndqq采纳,获得10
12秒前
思源应助生动的小白菜采纳,获得10
12秒前
药化行者完成签到,获得积分20
13秒前
多背单词发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059