Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes

医学 磁共振成像 平滑肌瘤 有效扩散系数 逻辑回归 子宫肌瘤 交叉验证 支持向量机 放射科 人工智能 计算机科学 内科学
作者
Tetsuro Tamehisa,Shun Sato,Takahiro Sakai,Ryo Maekawa,Masahiro Tanabe,Katsuyoshi Ito,Norihiro Sugino
出处
期刊:Obstetrics & Gynecology [Ovid Technologies (Wolters Kluwer)]
卷期号:143 (3): 358-365 被引量:1
标识
DOI:10.1097/aog.0000000000005475
摘要

To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data.This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set.The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes.We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
paprika完成签到,获得积分10
1秒前
1秒前
科目三应助youknowdcf采纳,获得10
1秒前
wanwei完成签到,获得积分10
2秒前
2秒前
苗佳威完成签到,获得积分10
2秒前
李健应助暖暖采纳,获得10
2秒前
鲜艳的无极完成签到,获得积分20
3秒前
乔尔司空完成签到,获得积分10
3秒前
拼搏迎梦完成签到,获得积分10
3秒前
tamaco完成签到,获得积分10
3秒前
一二完成签到,获得积分10
3秒前
红星路吃饼子的派大星完成签到 ,获得积分10
3秒前
shijin完成签到,获得积分10
3秒前
WZH完成签到,获得积分10
4秒前
4秒前
旺仔先生完成签到,获得积分0
4秒前
Scout完成签到,获得积分10
4秒前
XW完成签到,获得积分10
5秒前
啾比文完成签到,获得积分10
5秒前
wanci应助ferritin采纳,获得10
5秒前
烟花应助ferritin采纳,获得10
5秒前
lalala发布了新的文献求助10
5秒前
土豪的听筠完成签到,获得积分10
6秒前
min20210429完成签到,获得积分10
6秒前
7秒前
落寞天玉完成签到,获得积分10
7秒前
zik应助已秃采纳,获得10
8秒前
Akim应助tjnusq采纳,获得10
8秒前
七月完成签到,获得积分10
8秒前
8秒前
silin完成签到,获得积分10
8秒前
李雨完成签到,获得积分10
9秒前
9秒前
Ava应助英俊亦巧采纳,获得20
9秒前
xz完成签到,获得积分10
9秒前
guozi完成签到,获得积分10
10秒前
吴欢欢完成签到,获得积分10
10秒前
烂漫煎饼完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959