Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes

医学 磁共振成像 平滑肌瘤 有效扩散系数 逻辑回归 子宫肌瘤 交叉验证 支持向量机 放射科 人工智能 计算机科学 内科学
作者
Tetsuro Tamehisa,Shun Sato,Takahiro Sakai,Ryo Maekawa,Masahiro Tanabe,Katsuyoshi Ito,Norihiro Sugino
出处
期刊:Obstetrics & Gynecology [Ovid Technologies (Wolters Kluwer)]
卷期号:143 (3): 358-365 被引量:1
标识
DOI:10.1097/aog.0000000000005475
摘要

To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data.This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set.The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes.We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哇咔咔完成签到,获得积分10
1秒前
1秒前
江吉完成签到 ,获得积分10
2秒前
zhang发布了新的文献求助10
2秒前
JamesPei应助lulu采纳,获得30
2秒前
gishwx发布了新的文献求助10
3秒前
remember发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
向北发布了新的文献求助10
4秒前
5秒前
5秒前
冬藏完成签到,获得积分10
5秒前
qiuxiu发布了新的文献求助10
6秒前
8秒前
英姑应助满意以亦采纳,获得30
8秒前
gww发布了新的文献求助20
9秒前
枫林晚完成签到,获得积分10
9秒前
JiangY完成签到,获得积分10
10秒前
10秒前
10秒前
陈云凤完成签到,获得积分10
10秒前
ayintree发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
zhang完成签到,获得积分20
11秒前
ning发布了新的文献求助10
11秒前
11秒前
元谷雪发布了新的文献求助10
12秒前
12秒前
13秒前
Return应助科研通管家采纳,获得10
13秒前
积极的箴完成签到,获得积分10
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277