Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes

医学 磁共振成像 平滑肌瘤 有效扩散系数 逻辑回归 子宫肌瘤 交叉验证 支持向量机 放射科 人工智能 计算机科学 内科学
作者
Tetsuro Tamehisa,Shun Sato,Takahiro Sakai,Ryo Maekawa,Masahiro Tanabe,Katsuyoshi Ito,Norihiro Sugino
出处
期刊:Obstetrics & Gynecology [Ovid Technologies (Wolters Kluwer)]
卷期号:143 (3): 358-365 被引量:1
标识
DOI:10.1097/aog.0000000000005475
摘要

To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data.This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set.The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes.We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鉴定为学计算学的完成签到,获得积分10
1秒前
2秒前
baekhyun发布了新的文献求助20
2秒前
rrr完成签到,获得积分10
2秒前
维维逗奶完成签到 ,获得积分10
3秒前
GnodNy完成签到,获得积分10
3秒前
踏实谷蓝发布了新的文献求助30
4秒前
zhu97完成签到,获得积分10
4秒前
zh发布了新的文献求助30
5秒前
5秒前
lucfer完成签到 ,获得积分10
6秒前
Doctor Tang完成签到,获得积分10
6秒前
6秒前
Zixu发布了新的文献求助10
6秒前
zhenya完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
不配.应助小高采纳,获得10
8秒前
2Cd完成签到,获得积分10
9秒前
Zehn发布了新的文献求助10
9秒前
小白杨完成签到,获得积分10
9秒前
文献查询完成签到,获得积分10
10秒前
David完成签到 ,获得积分10
10秒前
烟花应助马tttt采纳,获得10
10秒前
mia完成签到 ,获得积分10
11秒前
小虾米完成签到 ,获得积分10
11秒前
仁爱青文完成签到 ,获得积分10
11秒前
李老头完成签到,获得积分10
11秒前
周超完成签到,获得积分10
11秒前
s0x0y0发布了新的文献求助10
11秒前
子车茗应助大力的冬日采纳,获得10
12秒前
hongcha完成签到,获得积分10
12秒前
大力含之完成签到,获得积分10
12秒前
12秒前
ry发布了新的文献求助10
12秒前
libra完成签到,获得积分10
13秒前
混子博士完成签到,获得积分10
13秒前
奋斗梦旋发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806177
关于积分的说明 7868353
捐赠科研通 2464650
什么是DOI,文献DOI怎么找? 1311885
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601880