A review of expert hybrid and co-estimation techniques for SOH and RUL estimation in battery management system with electric vehicle application

计算机科学 健康状况 可靠性工程 稳健性(进化) 估计 电池(电) 可靠性(半导体) 工程类 功率(物理) 系统工程 生物化学 量子力学 基因 物理 化学
作者
Turki Alsuwian,Shaheer Ansari,Muhammad Ammirrul Atiqi Mohd Zainuri,Afida Ayob,Aini Hussain,Molla Shahadat Hossain Lipu,Adam R. H. Alhawari,Abdulkarem H. M. Almawgani,Saleh Almasabi,Ayman Taher Hindi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123123-123123 被引量:37
标识
DOI:10.1016/j.eswa.2023.123123
摘要

To improve the functionality and efficiency of electric vehicles (EVs), the smart battery management system (BMS) is essential. The accurate estimation of the state of health (SOH) and remaining useful life (RUL) in BMS enhance battery safety, longevity, and reliability, which enhances EV performance and efficiency. However, the accurate estimation of SOH and RUL is challenging because of capacity degradation during charging and discharging operations. The conventional research to estimate the SOH and RUL of lithium-ion battery (LIB) is based on the single model framework. However, the single model for SOH and RUL estimation may not deliver accurate outcomes due to the complex internal LIB mechanism and varying external conditions. In recent times, the application of expert hybrid techniques (combining two or more models) has drawn huge attention from the research community due to their high accuracy and robustness under varying environmental conditions. Nonetheless, the implementation of hybrid techniques for SOH and RUL estimation for BMS in EVs is currently limited. Therefore, the originality of this work is to provide a thorough review of hybrid methods for SOH and RUL estimation in LIB with an emphasis on methodologies, executions, advantages, disadvantages, accuracy, and contributions. Additionally, the co-estimation of SOH and RUL utilizing the same model is gaining global popularity among researchers. Henceforth, the presented review work also investigates various techniques utilized to co-estimate the SOH and RUL simultaneously. Furthermore, some critical operation factors associated with SOH and RUL estimation framework are analyzed related to the dataset, model execution, battery parameters and their features. The applicability of the reviewed hybrid SOH and RUL estimation techniques are discussed along with current issues and limitations. Lastly, selected future suggestions are provided to guide the automobile sector to develop a reliable and accurate framework utilizing the hybrid and co-estimation framework to estimate the SOH and RUL in LIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助glowworm采纳,获得10
1秒前
wzZ完成签到,获得积分20
1秒前
1秒前
2秒前
李戊己发布了新的文献求助10
3秒前
琪琪扬扬完成签到,获得积分10
4秒前
韦良晨完成签到,获得积分10
4秒前
5秒前
5秒前
HUAN完成签到,获得积分10
5秒前
怎么忘了发布了新的文献求助30
7秒前
韦良晨发布了新的文献求助10
7秒前
小园饼干发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
丘比特应助一与余采纳,获得10
9秒前
10秒前
11秒前
CipherSage应助Hoyal_He采纳,获得30
13秒前
敏感的沛容完成签到,获得积分10
13秒前
江一山发布了新的文献求助10
15秒前
美满亦寒发布了新的文献求助10
15秒前
谭发发完成签到,获得积分20
16秒前
Niki发布了新的文献求助10
17秒前
111完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
21秒前
21秒前
22秒前
科研通AI5应助bigstone采纳,获得10
22秒前
22秒前
24秒前
25秒前
25秒前
段启瑞发布了新的文献求助10
25秒前
堪冷之发布了新的文献求助10
25秒前
诸葛不良发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745215
求助须知:如何正确求助?哪些是违规求助? 3288176
关于积分的说明 10057633
捐赠科研通 3004408
什么是DOI,文献DOI怎么找? 1649653
邀请新用户注册赠送积分活动 785467
科研通“疑难数据库(出版商)”最低求助积分说明 751085