材料科学
气凝胶
复合材料
电磁屏蔽
电磁干扰
化学气相渗透
石墨烯
化学气相沉积
反射损耗
电磁干扰
纳米线
复合数
光电子学
纳米技术
电子工程
工程类
作者
D. M. Jiang,Song Tian,Haojie Li,Zongwei Du,Tong Liu,Dingkun Yan,Lu Zhou,Shuai Bai,Xinfa Qiang
出处
期刊:Carbon
[Elsevier]
日期:2024-01-05
卷期号:219: 118788-118788
被引量:6
标识
DOI:10.1016/j.carbon.2024.118788
摘要
Electromagnetic interference (EMI) and pollution triggered by electromagnetic waves are becoming a severe issue with the rapid development of various e-devices. Developing low-density and high-efficiency electromagnetic shielding materials is of great importance. Carbon aerogel materials have received worldwide attention due to their significant electromagnetic interference shielding properties and physicochemical stability. Herein, lightweight hafnium carbide nanowire (HfCnw)-carbon fiber (CF)/graphene aerogel (GA) composites with excellent electromagnetic shielding performance were fabricated by successively introducing CF via hydrothermal process, pyrolytic carbon (PyC) coating via chemical vapor infiltration (CVI), and HfCnw via catalytic chemical vapor deposition (CCVD) into GA. It was found that the electrical conductivity of the HfCnw-CF/GA composites with the HfCnw growth time of 4 h reached 94.0 S/cm, which was far higher than 1.1 S/cm of pristine GA and 2.7 S/cm of the CF/GA composites. The EMI shielding effectiveness (SE) of the HfCnw-CF/GA composites was as high as 66.4 dB in the X-band, which was 3 times that (25.4 dB) for GA and 1.5 times that (45.8 dB) for the CF/GA composites. The EMI shielding performance of the HfCnw-CF/GA composites was improved mainly due to the enhanced multiple reflection loss, conductance loss, and interfacial polarization loss. Moreover, the HfCnw-CF/GA composites have a specific SE (SSE) value of 364.1 dB cm3/g, which exhibits good application prospects in the EMI field to meet the needs for light weight and high SE.
科研通智能强力驱动
Strongly Powered by AbleSci AI