净现值1
CEBPA公司
转录组
亚型
生物
计算生物学
遗传学
基因
突变
基因表达
染色体
计算机科学
核型
程序设计语言
作者
Jeppe Severens,Emin Onur Karakaslar,Bert A. van der Reijden,Elena Sánchez‐López,Redmar R. van den Berg,Constantijn J.M. Halkes,Peter van Balen,Hendrik Veelken,Marcel J. T. Reinders,Marieke Griffioen,Erik B. van den Akker
出处
期刊:Leukemia
[Springer Nature]
日期:2024-02-15
卷期号:38 (4): 751-761
被引量:5
标识
DOI:10.1038/s41375-024-02137-6
摘要
Subtyping of acute myeloid leukaemia (AML) is predominantly based on recurrent genetic abnormalities, but recent literature indicates that transcriptomic phenotyping holds immense potential to further refine AML classification. Here we integrated five AML transcriptomic datasets with corresponding genetic information to provide an overview (n = 1224) of the transcriptomic AML landscape. Consensus clustering identified 17 robust patient clusters which improved identification of CEBPA-mutated patients with favourable outcomes, and uncovered transcriptomic subtypes for KMT2A rearrangements (2), NPM1 mutations (5), and AML with myelodysplasia-related changes (AML-MRC) (5). Transcriptomic subtypes of KMT2A, NPM1 and AML-MRC showed distinct mutational profiles, cell type differentiation arrests and immune properties, suggesting differences in underlying disease biology. Moreover, our transcriptomic clusters show differences in ex-vivo drug responses, even when corrected for differentiation arrest and superiorly capture differences in drug response compared to genetic classification. In conclusion, our findings underscore the importance of transcriptomics in AML subtyping and offer a basis for future research and personalised treatment strategies. Our transcriptomic compendium is publicly available and we supply an R package to project clusters to new transcriptomic studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI