双金属片
催化作用
甲烷化
甲醇
材料科学
合金
选择性
格式化
镍
化学工程
纳米颗粒
无机化学
结晶学
化学
纳米技术
冶金
有机化学
工程类
作者
Nora K. Zimmerli,Lukas Rochlitz,Stefano Checchia,Christoph R. Müller,Christophe Copéret,Paula M. Abdala
出处
期刊:JACS Au
[American Chemical Society]
日期:2024-01-03
被引量:4
标识
DOI:10.1021/jacsau.3c00677
摘要
Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni–Ga-based catalysts. To this end, model Ni–Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni–Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ−). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni–Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molGaOx molNi–1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI