Contactor Fault Detection and Classification System Using Optical Fiber Bragg Grating Sensors

重复性 光纤布拉格光栅 故障检测与隔离 支持向量机 分类器(UML) 决策树 人工智能 接触器 模式识别(心理学) 工程类 故障模拟器 计算机科学 光纤 电子工程 执行机构 陷入故障 电信 化学 功率(物理) 物理 量子力学 色谱法
作者
Eduardo Henrique Dureck,Daniel Benetti,C. P. Wiston,Thiago H. Silva,Heitor Silvério Lopes,Uilian José Dreyer,Kleiton de Morais Sousa,Daniel Rodrigues Pipa,Jean Carlos Cardozo da Silva
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5316-5323 被引量:2
标识
DOI:10.1109/jsen.2023.3347189
摘要

Electrical switching devices control and protect systems at various voltages. Monitoring them ensures safety and reliability. This study introduces a method to instrument and analyze these devices, using ABB AX40 AC contactors and Fiber Bragg Grating (FBG) sensors. The dynamic strain sensing of the FBG was used for acquiring signals for the analysis of the switching event. The devices were subjected to three simulated fault conditions: the inner contact blockage, pressure spring wear-off, and load contact wear-off. For recognizing the degradation patterns of the mechanisms, the data acquired during the switching events were submitted to several steps, such as data augmentation, feature selection, and classification. With a Support Vector Machine as the classifier, a score of 80% for fault detection in training and validation was achieved. Within this detection, a score of 80.2% for fault classification was achieved. Regarding the repeatability test data set, it was able to achieve results of fault detection of 72.1% and within this detection, a score of 85% for fault classification was achieved. We also used both, the CN2 Rule classifier and the Decision Tree classifier, to extract human-comprehensible information from the frequency spectrum features. The results presented in this paper suggest the suitability of FBG and machine learning methods for the predictive maintenance of switching devices and the importance of repeatability for future field applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwy应助西米采纳,获得10
刚刚
丘比特应助星星采纳,获得10
1秒前
Hiker发布了新的文献求助10
2秒前
谷云应助千秋竞岁采纳,获得10
2秒前
核桃发布了新的文献求助10
2秒前
4秒前
我是老大应助承一采纳,获得10
5秒前
哇冰1发布了新的文献求助10
6秒前
我刷的烧饼贼亮完成签到 ,获得积分10
7秒前
ChenK发布了新的文献求助10
7秒前
miz驳回了CodeCraft应助
8秒前
大梦龟棠发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
浮游应助金木水采纳,获得10
12秒前
星星发布了新的文献求助10
13秒前
慕青应助chayese采纳,获得20
13秒前
14秒前
核桃发布了新的文献求助10
15秒前
不知所措的咪完成签到,获得积分10
15秒前
翁依波完成签到,获得积分10
15秒前
AAA完成签到,获得积分10
16秒前
16秒前
Ting完成签到,获得积分10
17秒前
猕猴桃完成签到,获得积分10
17秒前
李伟峰发布了新的文献求助10
18秒前
nick完成签到,获得积分10
21秒前
myyyyy发布了新的文献求助10
22秒前
苑小苑完成签到,获得积分10
22秒前
23秒前
Amelia完成签到,获得积分10
24秒前
li完成签到 ,获得积分10
24秒前
25秒前
BowieHuang应助li采纳,获得10
26秒前
多巴胺完成签到,获得积分10
26秒前
进击的PhD应助老马采纳,获得30
29秒前
小明发布了新的文献求助10
29秒前
贼吖完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255