Contactor Fault Detection and Classification System Using Optical Fiber Bragg Grating Sensors

重复性 光纤布拉格光栅 故障检测与隔离 支持向量机 分类器(UML) 决策树 人工智能 接触器 模式识别(心理学) 工程类 故障模拟器 计算机科学 光纤 电子工程 执行机构 陷入故障 电信 化学 功率(物理) 物理 量子力学 色谱法
作者
Eduardo Henrique Dureck,Daniel Benetti,C. P. Wiston,Thiago H. Silva,Heitor Silvério Lopes,Uilian José Dreyer,Kleiton de Morais Sousa,Daniel Rodrigues Pipa,Jean Carlos Cardozo da Silva
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (4): 5316-5323 被引量:2
标识
DOI:10.1109/jsen.2023.3347189
摘要

Electrical switching devices control and protect systems at various voltages. Monitoring them ensures safety and reliability. This study introduces a method to instrument and analyze these devices, using ABB AX40 AC contactors and Fiber Bragg Grating (FBG) sensors. The dynamic strain sensing of the FBG was used for acquiring signals for the analysis of the switching event. The devices were subjected to three simulated fault conditions: the inner contact blockage, pressure spring wear-off, and load contact wear-off. For recognizing the degradation patterns of the mechanisms, the data acquired during the switching events were submitted to several steps, such as data augmentation, feature selection, and classification. With a Support Vector Machine as the classifier, a score of 80% for fault detection in training and validation was achieved. Within this detection, a score of 80.2% for fault classification was achieved. Regarding the repeatability test data set, it was able to achieve results of fault detection of 72.1% and within this detection, a score of 85% for fault classification was achieved. We also used both, the CN2 Rule classifier and the Decision Tree classifier, to extract human-comprehensible information from the frequency spectrum features. The results presented in this paper suggest the suitability of FBG and machine learning methods for the predictive maintenance of switching devices and the importance of repeatability for future field applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hilda007应助liyanping采纳,获得10
1秒前
1秒前
星辰大海应助着急的书本采纳,获得30
1秒前
2秒前
苏和杨发布了新的文献求助10
2秒前
JINGJING发布了新的文献求助10
2秒前
纯真小笼包完成签到 ,获得积分10
2秒前
xkxkii完成签到,获得积分10
2秒前
小谭霸天发布了新的文献求助10
5秒前
椰椰鲨完成签到,获得积分10
5秒前
英俊的铭应助忧郁盼夏采纳,获得10
6秒前
6秒前
7秒前
7秒前
从容甜瓜完成签到,获得积分10
8秒前
枪王阿绣完成签到 ,获得积分10
9秒前
风风完成签到,获得积分10
10秒前
聪慧的正豪应助卡列林采纳,获得10
10秒前
Orange应助Alex采纳,获得10
11秒前
11秒前
wsh12113发布了新的文献求助10
11秒前
12秒前
KEYAN发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
upright完成签到,获得积分10
13秒前
13秒前
落寞的又菡完成签到,获得积分10
14秒前
杨梦珺发布了新的文献求助10
14秒前
14秒前
yj完成签到,获得积分10
15秒前
麦客发布了新的文献求助10
16秒前
yyl发布了新的文献求助10
16秒前
犹豫冰棍完成签到,获得积分10
17秒前
斯文败类应助KEYAN采纳,获得10
17秒前
大白鹅完成签到,获得积分10
17秒前
chi发布了新的文献求助10
18秒前
20秒前
老迟到的威完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017581
求助须知:如何正确求助?哪些是违规求助? 4257160
关于积分的说明 13267994
捐赠科研通 4061491
什么是DOI,文献DOI怎么找? 2221358
邀请新用户注册赠送积分活动 1230610
关于科研通互助平台的介绍 1153234