PTCAS: Prompt Tuning with Continuous Answer Search for Relation Extraction

计算机科学 利用 关系抽取 任务(项目管理) 关系(数据库) 人工智能 集合(抽象数据类型) 过程(计算) 机器学习 约束(计算机辅助设计) 资源(消歧) 信息抽取 自然语言处理 数据挖掘 程序设计语言 工程类 机械工程 经济 计算机安全 管理 计算机网络
作者
Yang Chen,Bowen Shi,Ke Xu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:659: 120060-120060
标识
DOI:10.1016/j.ins.2023.120060
摘要

Tremendous progress has been made in the development of fine-tuned pretrained language models (PLMs) that achieve outstanding results on almost all natural language processing (NLP) tasks. Further stimulation of rich knowledge distribution within PLMs can be achieved through additional prompts for fine-tuning, namely, prompt tuning. Generally, prompt engineering involves prompt template engineering, which is the process of searching for an appropriate template for a specific task, and answer engineering, whose objective is to seek an answer space and map it to the original task label set. Existing prompt-based methods are primarily designed manually and search for appropriate verbalization in a discrete answer space, which is insufficient and always results in suboptimal performance for complex NLP tasks such as relation extraction (RE). Therefore, we propose a novel prompt-tuning method with a continuous answer search for RE, which enables the model to find optimal answer word representations in a continuous space through gradient descent and thus fully exploit the relation semantics. To further exploit entity-type information and integrate structured knowledge into our approach, we designed and added an additional TransH-based structured knowledge constraint to the optimization procedure. We conducted comprehensive experiments on four RE benchmarks to evaluate the effectiveness of the proposed approach. The experimental results show that our approach achieves competitive or superior performance without manual answer engineering compared to existing baselines under both fully supervised and low-resource scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助521采纳,获得10
1秒前
1秒前
weizhao完成签到,获得积分10
2秒前
esther完成签到,获得积分10
3秒前
leon发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
头秃科研人完成签到,获得积分10
5秒前
我想静静完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
上官若男应助云舒采纳,获得10
8秒前
Selenaxue发布了新的文献求助10
9秒前
duxh123完成签到,获得积分10
9秒前
箴逸完成签到,获得积分10
9秒前
DDy10001发布了新的文献求助10
10秒前
安静严青发布了新的文献求助10
10秒前
如梦完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
duxh123发布了新的文献求助10
12秒前
12秒前
hxx完成签到,获得积分10
12秒前
11111112222完成签到,获得积分10
13秒前
binshier完成签到,获得积分10
14秒前
15秒前
15秒前
852应助哈哈哈哈哈采纳,获得10
15秒前
16秒前
hxx发布了新的文献求助10
17秒前
蔷薇之花完成签到 ,获得积分20
19秒前
魅雪霓完成签到,获得积分10
20秒前
酷波er应助烂漫小刺猬采纳,获得30
20秒前
carly发布了新的文献求助20
21秒前
yydragen应助Maestro_S采纳,获得50
21秒前
22秒前
斯巴达发布了新的文献求助10
22秒前
乌云完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719