This article discusses the effect of electrolysis parameters on the particle size and morphology of the tin powder synthesized by the electrolytic method. The electrolytic method is simple and can eliminate the risk of lead and arsenic gas emissions owing to the low temperature of the process. The effects of tin concentration in a sulfate-based electrolyte, a mass ratio of thiourea/gelatin as additives, current density, and electrolysis time on the particle size and morphology of the synthesized tin powder were examined. Pure tin and titanium plates were used as the anode and the cathode, respectively. After the electrolysis experiments were completed, the synthesized tin powders were analyzed by a particle size analyzer, a scanning electron microscope, and X-ray diffraction. The optimum condition of the experiment that resulted in the highest D90 was achieved at an initial concentration of SnSO4 = 3 g/L, a mass ratio of thiourea/gelatin = 1/4, a current density of 1 A/dm2, and a 10 min electrolysis time. Under this condition, 90% of the tin powder size obtained was smaller than 2.279 μm, showing a rounded morphology with a length-to-width ratio of 1.15. The current efficiency increased with increasing tin concentration, decreasing current density, and a shorter electrolysis time.