钻石
材料科学
中间层
热导率
热阻
光电子学
界面热阻
工程物理
热的
再结晶(地质)
三维集成电路
硅
阳极连接
炸薯条
热撒布器
机械工程
纳米技术
复合材料
散热片
集成电路
电气工程
工程类
图层(电子)
古生物学
蚀刻(微加工)
物理
气象学
生物
作者
Yi Zhong,Shuchao Bao,Yimin He,Ran He,Xiaofan Jiang,Hengbo Zhang,Yuchun Zhao,Yang Wang,Lu Zhao,Wenbiao Ruan,Yu Chen,Mingchuan Zhang,Daquan Yu
出处
期刊:IEEE Electron Device Letters
[Institute of Electrical and Electronics Engineers]
日期:2024-01-10
卷期号:45 (3): 448-451
被引量:4
标识
DOI:10.1109/led.2024.3351990
摘要
Thermal management poses a critical challenge in the design of modern electronic packages.This letter presents a diamond-on-chip-on-glass interposer (DoCoG) technology that incorporates polycrystalline diamond heat-spreader substrates known for their exceptional thermal conductivity.These diamonds are directly bonded to the back-side of silicon chips on a glass interposer, resulting in markedly enhanced cooling performance.The junction-to-ambient thermal resistance dropped by 28.5% due to the integration of diamond.The creation of such multi-stacked DoCoG integration and efficient cooling necessitates a diamond/chip connection that combines a minimal bonding thermal budget, high working temperature, and low thermal boundary resistance.To address this challenge, the study proposes a low-temperature bonding technique through nanolayer Cu/Au recrystallization.The effects of bonding voids on overall cooling performance were investigated.These results represent significant progress toward universal approaches for the viable integration of high-performance coolers into electronic packages, potentially enabling applications that are currently constrained by thermal limitations in heterogeneous integrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI